120 research outputs found

    Climbing Robot for Ferromagnetic Surfaces with Dynamic Adjustment of the Adhesion System

    Get PDF
    This paper presents a climbing robot with wheeled locomotion and adhesion through permanent magnets, developed with the intention of being used in the inspection of different types of man-made ferromagnetic structures, such as towers for wind turbines, fuel storage tanks, and ship hulls. In this paper are presented the main considerations thought for its project, as well as several constructive aspects, among which are detailed its mechanical and electrical construction, the implemented control architecture, and the human-machine interface developed for the manual and automatic control of the vehicle while in operation. Although it can be manually controlled, the vehicle is designed to have a semiautonomous behavior, allowing a remote inspection process controlled by a technician, this way reducing the risks associated with the human inspection of tall structures and ATEX places. The distinguishing characteristic of this robot is its dynamic adjustment system of the permanent magnets in order to assure the machine adhesion to the surfaces, even when crossing slightly irregular and curved surfaces with a large radius

    The Problem of Adhesion Methods and Locomotion Mechanism Development for Wall-Climbing Robots

    Full text link
    This review considers a problem in the development of mobile robot adhesion methods with vertical surfaces and the appropriate locomotion mechanism design. The evolution of adhesion methods for wall-climbing robots (based on friction, magnetic forces, air pressure, electrostatic adhesion, molecular forces, rheological properties of fluids and their combinations) and their locomotion principles (wheeled, tracked, walking, sliding framed and hybrid) is studied. Wall-climbing robots are classified according to the applications, adhesion methods and locomotion mechanisms. The advantages and disadvantages of various adhesion methods and locomotion mechanisms are analyzed in terms of mobility, noiselessness, autonomy and energy efficiency. Focus is placed on the physical and technical aspects of the adhesion methods and the possibility of combining adhesion and locomotion methods

    Magnetic Adhesion in Wall Climbing Robots using varied Electromagnet Arrangements

    Get PDF
    The improvements and innovations in the field of robotics have given a great opportunity to perform tasks that are hazardous for humans to perform. For example, robots can be used for working on high-storied buildings, inspection on ferromagnetic surfaces, painting and maintenance of buildings, surveillance purposes, etc., at the outset, to carry out any operation on vertical surfaces, which may be quite hazardous and time-consuming as well, wall climbing robots (WCRs) can be deployed. The method of adhesion determines the stability of the robot on the wall, be it smooth or coarse. Using magnets to bring about magnetic adhesion would be advantageous when the robot is maneuvered over iron or steel surfaces, typically, to clean boilers, etc., This paper presents the different ways of placements of the magnets, both permanent and electromagnets, in order to introduce adequate magnetic adhesion that would cease the robot from toppling down while encountering an obstacle. This work proposes two methods of arrangement of magnets: square and diamond. Four electromagnets when arranged in array formation with 5000 windings of thin copper coil, generated a magnetic field force of approximately 150 N when 50 A of current is passed. By and large, around 35 N to 40 N is the suction force that would be sufficient to stick the WCR of 2kg on the wall, while using a suction chamber instead of electromagnets. Other methods of placing the magnets such as square and diamond are studied and compared as well using FEMM. Hence arranging the 4 electromagnets in array formation gives an adhesion pressure sufficient to hold and move the WCR, over the vertical wall against gravity

    A concept selection method for designing climbing robots

    Get PDF
    This paper presents a concept selection methodology, inspired by the Verein Deutscher Ingenieure (VDI) model and Pugh's weighted matrix method, for designing climbing robots conceptually based on an up-to-date literature review. The proposed method is illustrated with a case study of ongoing research, the investigation of an adaptable and energetically autonomous climbing robot, in Loughborough University

    Service Robots for Motion and Special Applications on the Vertical Oriented Walls

    Get PDF
    This chapter is focused on the area of mobile systems of service robots for motion on the vertically oriented glass walls (e.g., facades of high‐rise building) with the aim of their using in many inspection and technological applications. Preliminary part clearly maps the basic mechanical principles and approaches to mobile platform design with respect to the concept of kinematic chain and type of actuators. Conclusions of extensive research activities are presented, and on this background, the new design development of mechanics of robot mobile platform was made and uses two parallel placed parallelograms. The control system is based on an industrial computer, includes a module for wireless communication, and is equipped with a laser and an ultrasonic position sensor. Movement members are equipped with individual electric actuators and vacuum gripping system, which consists of smart ejectors in combination with active suction cups. Given that the load character of the suction cups during the robots movement on the vertical wall is very unfavorable, considerable authors’ attention has been paid to the analysis of the deformation behavior of suction cups so as to determine the limits of external radial load to the stable contact, and discusses the possibility of increasing the radial load of gripping elements in relation to the contact surfaces character and vacuum levels

    Inspection robots in oil and gas industry : a review of current solutions and future trends

    Get PDF
    With the increasing demands for energy, oil and gas companies have a demand to improve their efficiency, productivity and safety. Any potential corrosions and cracks on their production, storage or transportation facilities could cause disasters to both human society and the natural environment. Since many oil and gas assets are located in the extreme environment, there is an ongoing demand for robots to perform inspection tasks, which will be more cost-effective and safer. This paper provides a state of art review of inspection robots used in the oil and gas industry which including remotely operated vehicles (ROVs), autonomous underwater vehicles (AUVs), unmanned ground vehicles (UGVs) and unmanned aerial vehicles (UAVs). Different kinds of inspection robots are designed for inspecting different asset structures. The outcome of the review suggests that the reliable autonomous inspection UAVs and AUVs will gain interest among these robots and reliable autonomous localisation, environment mapping, intelligent control strategies, path planning and Non-Destructive Testing (NDT) technology will be the primary areas of research

    Miniature Mobile Systems for Inspection of Ferromagnetic Structures

    Get PDF
    Power plants require periodical inspections to control their state. To ensure a safe operation, parts that could fail before the next inspection are repaired or replaced, since a forced outage due to a failure can cost up to millions of dollars per day. Non-Destructive Testing (NDT) methods are used to detect different defects that could occur, such as cracks, thinning, corrosion or pitting. Some parts are inspected directly in situ, but may be difficult to access; these can require opening access holes or building scaffoldings. Other parts are disassembled and inspected in workshops, when the required inspection tools cannot be moved. In this thesis, we developed innovative miniature mobile systems able to move within these small and complex installations and inspect them. Bringing sensors to difficult-to-access places using climbing robots can reduce the inspection time and costs, because some dismantling or scaffolding can be eliminated. New miniature sensors can help to inspect complex parts without disassembling them, and reduce the inspection costs, as well. To perform such inspections, miniature mobile systems require a high mobility and keen sensing capabilities. The following approach was used to develop these systems. First, different innovative climbing robots are developed. They use magnetic adhesion, as most structures are made of ferromagnetic steel. Then, vision is embedded in some of the robots. Performing visual inspections becomes thus possible, as well as controlling the robots remotely, without viewing them. Finally, non-visual NDT sensors are developed and embedded in some of the robots, allowing them to detect defects that simple vision cannot detect. Achieving the miniaturization of the developed systems requires strong system integration during these three steps. A set of examples for the different steps has been designed, implemented and tested to illustrate this approach. The Tripillars robots, for instance, use caterpillars, and are able to climb on surfaces of any inclination and to pass inner angles. The Cy-mag3Ds robots use an innovative magnetic wheel concept, and are able to climb on surfaces of any inclination and to pass inner angles, outer angles and surface flips. The Tubulos robots move in tubes of 25 mm diameter at any inclination. All robots embed the required electronics, actuators, sensors and energy to be controlled remotely by the user. Wireless transmission of the commands signals allows the systems to maintain their full mobility without disturbing cables. Integrating Hall sensors near the magnetic systems allows them to measure the adhesion force. This information improves the security of the robots, since when the adhesion force becomes low, the robots can be stopped before they fall. The Tubulo II uses Magnetic Switchable Devices (MSDs) for adhesion. An MSD is composed of a ferromagnetic stator and one or more moving magnets; it has the advantage of requiring only a low force to switch on or off a high adhesion force. MSDs have the advantage of being easy to clean of the magnetic dust that is present in most real environments and that sticks strongly to magnetic systems. As an additional step toward inspection, a camera is embedded on the Cy-mag3D II and the Tubulos. It allows these robots to inspect visually the structures the robots move in, and to control them remotely. The perspective of a climbing robot in an unknown environment is often not enough to give the user a sense of its scale, and to move efficiently in it. A distance sensor is designed and embedded on the Cy-mag3D II, which increases the user's perception of the environment substantially; Finally, an innovative miniature Magnetic Particle Inspection (MPI) system was developed to inspect turbine blades without disassembling them. An MSD is used to perform the required magnetization. The system can automatically inspect a flat surface, performing all the required steps of MPI: magnetize, spray magnetic particles, record images under UV light and demagnetize. Thanks to the strong integration and miniaturization, the system can potentially inspect complex parts such as steam turbines

    Design and Real Time Control of a Versatile Scansorial Robot

    Get PDF
    This thesis presents investigations into the development of a versatile scansorial mobile robot and real-time realisation of a control system for different configurations of the robot namely climbing mode, walking mode and steering mode. The mobile robot comprises of a hybrid leg and wheel mechanism with innovative design that enables it to interchange its configuration to perform the specific tasks of pole climbing in climbing mode, walking and step climbing in walking mode, and skid steering and inclined slope climbing in steering mode. The motivation of this research is due to the surrounding environment which is not always structured for exploration or navigation missions, and thus poses significant difficulty for the robot to manoeuvre and accomplish the intended task. Hence, the development of versatile scansorial robot with a flexible and interchangeable configuration can provide a broad range of applications and locomotion system and to achieve the mission objective successfully. The robot design consists of four arms/legs with wheel attached at each end-effector and has two link manipulation capability. In climbing mode, the arms are configured as grippers to grip the pole and wheels accelerate to ascend or descend. The climbing angle is monitored to retain the level of the robot while climbing. However, in walking mode, the arms are configured as legs and the wheels are disabled. By implementing a periodic walking gait, the robot is capable of performing stable walking and step climbing. In steering mode, the arms are configured as suspension and the wheels are used for manoeuvring. In this mode, the skid steering system is used to enable the robot perform the turn. The versatile scansorial robot’s configurations and locomotion capabilities are assessed experimentally in real time implementation using the physical prototype. The experiments provided demonstrate the versatility of the robot and successfully fulfill the aims and objectives of the research

    Design of novel adaptive magnetic adhesion mechanism for climbing robots in ferric structures

    Get PDF
    The work presented in this thesis proposes a novel adaptive magnetic adhesion mechanism that can be implemented in most locomotion mechanisms employed in climbing robots for ferric structures. This novel mechanism has the capability to switch OFF and ON its magnetic adhesion with minimal power consumption, and remain at either state after the excitation is removed. Furthermore, the proposed adhesion mechanism has the ability to adapt the strength of the adhesive force to a desired magnitude. These capabilities make the proposed adhesion mechanism a potential solution in the field of wall climbing robots. The novel contributions of the proposed mechanism include the switching of the adhesive force, selectivity of the adhesive force magnitude; determination of the parameters that have an impact in the final adhesive force. Finally, a final prototype is constructed with customised components and it is subject to a set of simulations and experiments to validate its performance
    corecore