668 research outputs found

    Convolution products for hypercomplex Fourier transforms

    Full text link
    Hypercomplex Fourier transforms are increasingly used in signal processing for the analysis of higher-dimensional signals such as color images. A main stumbling block for further applications, in particular concerning filter design in the Fourier domain, is the lack of a proper convolution theorem. The present paper develops and studies two conceptually new ways to define convolution products for such transforms. As a by-product, convolution theorems are obtained that will enable the development and fast implementation of new filters for quaternionic signals and systems, as well as for their higher dimensional counterparts.Comment: 18 pages, two columns, accepted in J. Math. Imaging Visio

    Connecting spatial and frequency domains for the quaternion Fourier transform

    Get PDF
    The quaternion Fourier transform (qFT) is an important tool in multi-dimensional data analysis, in particular for the study of color images. An important problem when applying the qFT is the mismatch between the spatial and frequency domains: the convolution of two quaternion signals does not map to the pointwise product of their qFT images. The recently defined ‘Mustard’ convolution behaves nicely in the frequency domain, but complicates the corresponding spatial domain analysis. The present paper analyses in detail the correspondence between classical convolution and the new Mustard convolution. In particular, an expression is derived that allows one to write classical convolution as a finite linear combination of suitable Mustard convolutions. This result is expected to play a major role in the further development of quaternion image processing, as it yields a formula for the qFT spectrum of the classical convolution

    Visualization and Analysis of Flow Fields based on Clifford Convolution

    Get PDF
    Vector fields from flow visualization often containmillions of data values. It is obvious that a direct inspection of the data by the user is tedious. Therefore, an automated approach for the preselection of features is essential for a complete analysis of nontrivial flow fields. This thesis deals with automated detection, analysis, and visualization of flow features in vector fields based on techniques transfered from image processing. This work is build on rotation invariant template matching with Clifford convolution as developed in the diploma thesis of the author. A detailed analysis of the possibilities of this approach is done, and further techniques and algorithms up to a complete segmentation of vector fields are developed in the process. One of the major contributions thereby is the definition of a Clifford Fourier transform in 2D and 3D, and the proof of a corresponding convolution theorem for the Clifford convolution as well as other major theorems. This Clifford Fourier transform allows a frequency analysis of vector fields and the behavior of vectorvalued filters, as well as an acceleration of the convolution computation as a fast transform exists. The depth and precision of flow field analysis based on template matching and Clifford convolution is studied in detail for a specific application, which are flow fields measured in the wake of a helicopter rotor. Determining the features and their parameters in this data is an important step for a better understanding of the observed flow. Specific techniques dealing with subpixel accuracy and the parameters to be determined are developed on the way. To regard the flow as a superposition of simpler features is a necessity for this application as close vortices influence each other. Convolution is a linear system, so it is suited for this kind of analysis. The suitability of other flow analysis and visualization methods for this task is studied here as well. The knowledge and techniques developed for this work are brought together in the end to compute and visualize feature based segmentations of flow fields. The resulting visualizations display important structures of the flow and highlight the interesting features. Thus, a major step towards robust and automatic detection, analysis and visualization of flow fields is taken

    Clifford wavelets for fetal ECG extraction

    Full text link
    Analysis of the fetal heart rate during pregnancy is essential for monitoring the proper development of the fetus. Current fetal heart monitoring techniques lack the accuracy in fetal heart rate monitoring and features acquisition, resulting in diagnostic medical issues. The challenge lies in the extraction of the fetal ECG from the mother's ECG during pregnancy. This approach has the advantage of being a reliable and non-invasive technique. For this aim, we propose in this paper a wavelet/multi-wavelet method allowing to extract perfectly the feta ECG parameters from the abdominal mother ECG. The method is essentially due to the exploitation of Clifford wavelets as recent variants in the field. We prove that these wavelets are more efficient and performing against classical ones. The experimental results are therefore due to two basic classes of wavelets and multi-wavelets. A first-class is the classical Haar Schauder, and a second one is due to Clifford valued wavelets and multi-wavelets. These results showed that wavelets/multiwavelets are already good bases for the FECG processing, provided that Clifford ones are the best.Comment: 21 pages, 8 figures, 1 tabl

    An Optimized Architecture for CGA Operations and Its Application to a Simulated Robotic Arm

    Get PDF
    Conformal geometric algebra (CGA) is a new geometric computation tool that is attracting growing attention in many research fields, such as computer graphics, robotics, and computer vision. Regarding the robotic applications, new approaches based on CGA have been proposed to efficiently solve problems as the inverse kinematics and grasping of a robotic arm. The hardware acceleration of CGA operations is required to meet real-time performance requirements in embedded robotic platforms. In this paper, we present a novel embedded coprocessor for accelerating CGA operations in robotic tasks. Two robotic algorithms, namely, inverse kinematics and grasping of a human-arm-like kinematics chain, are used to prove the effectiveness of the proposed approach. The coprocessor natively supports the entire set of CGA operations including both basic operations (products, sums/differences, and unary operations) and complex operations as rigid body motion operations (reflections, rotations, translations, and dilations). The coprocessor prototype is implemented on the Xilinx ML510 development platform as a complete system-on-chip (SoC), integrating both a PowerPC processing core and a CGA coprocessing core on the same Xilinx Virtex-5 FPGA chip. Experimental results show speedups of 78x and 246x for inverse kinematics and grasping algorithms, respectively, with respect to the execution on the PowerPC processor

    The Color Clifford Hardy Signal: Application to Color Edge Detection and Optical Flow

    Full text link
    This paper introduces the idea of the color Clifford Hardy signal, which can be used to process color images. As a complex analytic function's high-dimensional analogue, the color Clifford Hardy signal inherits many desirable qualities of analyticity. A crucial tool for getting the color and structural data is the local feature representation of a color image in the color Clifford Hardy signal. By looking at the extended Cauchy-Riemann equations in the high-dimensional space, it is possible to see the connection between the different parts of the color Clifford Hardy signal. Based on the distinctive and important local amplitude and local phase generated by the color Clifford Hardy signal, we propose five methods to identify the edges of color images with relation to a certain color. To prove the superiority of the offered methodologies, numerous comparative studies employing image quality assessment criteria are used. Specifically by using the multi-scale structure of the color Clifford Hardy signal, the proposed approaches are resistant to a variety of noises. In addition, a color optical flow detection method with anti-noise ability is provided as an example of application.Comment: 13 page

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF
    • …
    corecore