361 research outputs found

    Improving Content Delivery Efficiency through Multi-Layer Mobile Edge Adaptation

    Get PDF
    This paper presents a novel architecture for optimizing the HTTP-based multimedia delivery in multi-user mobile networks. This proposal combines the usual client-driven dynamic adaptation scheme DASH-3GPP with network-assisted adaptation capabilities, in order to maximize the overall Quality of Experience. The foundation of this combined adaptation scheme is based on two state of the art technologies. On one hand, adaptive HTTP streaming with multi-layer encoding allows efficient media delivery and improves the experienced media quality in highly dynamic channels. Additionally, it enables the possibility to implement network-level adaptations for better coping with multi-user scenarios. On the other hand, mobile edge computing facilitates the deployment of mobile services close to the user. This approach brings new possibilities in modern and future mobile networks, such as close to zero delays and awareness of the radio status. The proposal in this paper introduces a novel element, denoted as Mobile Edge-DASH Adaptation Function, which combines all these advantages to support efficient media delivery in mobile multi-user scenarios. Furthermore, we evaluate the performance enhancements of this content- and user context-aware scheme through simulations of a mobile multimedia scenario.European Union H2020 programme: Grant Agreement H2020-ICT-671596. Spanish Ministerio de Economia y Competitividad (MINECO): grant TEC2013-46766-R

    QOE-AWARE CONTENT DISTRIBUTION SYSTEMS FOR ADAPTIVE BITRATE VIDEO STREAMING

    Get PDF
    A prodigious increase in video streaming content along with a simultaneous rise in end system capabilities has led to the proliferation of adaptive bit rate video streaming users in the Internet. Today, video streaming services range from Video-on-Demand services like traditional IP TV to more recent technologies such as immersive 3D experiences for live sports events. In order to meet the demands of these services, the multimedia and networking research community continues to strive toward efficiently delivering high quality content across the Internet while also trying to minimize content storage and delivery costs. The introduction of flexible and adaptable technologies such as compute and storage clouds, Network Function Virtualization and Software Defined Networking continue to fuel content provider revenue. Today, content providers such as Google and Facebook build their own Software-Defined WANs to efficiently serve millions of users worldwide, while NetFlix partners with ISPs such as ATT (using OpenConnect) and cloud providers such as Amazon EC2 to serve their content and manage the delivery of several petabytes of high-quality video content for millions of subscribers at a global scale, respectively. In recent years, the unprecedented growth of video traffic in the Internet has seen several innovative systems such as Software Defined Networks and Information Centric Networks as well as inventive protocols such as QUIC, in an effort to keep up with the effects of this remarkable growth. While most existing systems continue to sub-optimally satisfy user requirements, future video streaming systems will require optimal management of storage and bandwidth resources that are several orders of magnitude larger than what is implemented today. Moreover, Quality-of-Experience metrics are becoming increasingly fine-grained in order to accurately quantify diverse content and consumer needs. In this dissertation, we design and investigate innovative adaptive bit rate video streaming systems and analyze the implications of recent technologies on traditional streaming approaches using real-world experimentation methods. We provide useful insights for current and future content distribution network administrators to tackle Quality-of-Experience dilemmas and serve high quality video content to several users at a global scale. In order to show how Quality-of-Experience can benefit from core network architectural modifications, we design and evaluate prototypes for video streaming in Information Centric Networks and Software-Defined Networks. We also present a real-world, in-depth analysis of adaptive bitrate video streaming over protocols such as QUIC and MPQUIC to show how end-to-end protocol innovation can contribute to substantial Quality-of-Experience benefits for adaptive bit rate video streaming systems. We investigate a cross-layer approach based on QUIC and observe that application layer-based information can be successfully used to determine transport layer parameters for ABR streaming applications

    Quality-driven management of video streaming services in segment-based cache networks

    Get PDF

    Towards QoE-Driven Optimization of Multi-Dimensional Content Streaming

    Get PDF
    Whereas adaptive video streaming for 2D video is well established and frequently used in streaming services, adaptation for emerging higher-dimensional content, such as point clouds, is still a research issue. Moreover, how to optimize resource usage in streaming services that support multiple content types of different dimensions and levels of interactivity has so far not been sufficiently studied. Learning-based approaches aim to optimize the streaming experience according to user needs. They predict quality metrics and try to find system parameters maximizing them given the current network conditions. With this paper, we show how to approach content and network adaption driven by Quality of Experience (QoE) for multi-dimensional content. We describe components required to create a system adapting multiple streams of different content types simultaneously, identify research gaps and propose potential next steps

    QoE on media deliveriy in 5G environments

    Get PDF
    231 p.5G expandirá las redes móviles con un mayor ancho de banda, menor latencia y la capacidad de proveer conectividad de forma masiva y sin fallos. Los usuarios de servicios multimedia esperan una experiencia de reproducción multimedia fluida que se adapte de forma dinámica a los intereses del usuario y a su contexto de movilidad. Sin embargo, la red, adoptando una posición neutral, no ayuda a fortalecer los parámetros que inciden en la calidad de experiencia. En consecuencia, las soluciones diseñadas para realizar un envío de tráfico multimedia de forma dinámica y eficiente cobran un especial interés. Para mejorar la calidad de la experiencia de servicios multimedia en entornos 5G la investigación llevada a cabo en esta tesis ha diseñado un sistema múltiple, basado en cuatro contribuciones.El primer mecanismo, SaW, crea una granja elástica de recursos de computación que ejecutan tareas de análisis multimedia. Los resultados confirman la competitividad de este enfoque respecto a granjas de servidores. El segundo mecanismo, LAMB-DASH, elige la calidad en el reproductor multimedia con un diseño que requiere una baja complejidad de procesamiento. Las pruebas concluyen su habilidad para mejorar la estabilidad, consistencia y uniformidad de la calidad de experiencia entre los clientes que comparten una celda de red. El tercer mecanismo, MEC4FAIR, explota las capacidades 5G de analizar métricas del envío de los diferentes flujos. Los resultados muestran cómo habilita al servicio a coordinar a los diferentes clientes en la celda para mejorar la calidad del servicio. El cuarto mecanismo, CogNet, sirve para provisionar recursos de red y configurar una topología capaz de conmutar una demanda estimada y garantizar unas cotas de calidad del servicio. En este caso, los resultados arrojan una mayor precisión cuando la demanda de un servicio es mayor
    corecore