1,765 research outputs found

    Abstract Interactions and Interaction Refinement in Model-Driven Design

    Get PDF
    In a model-driven design process the interaction between application parts can be described at various levels of platform-independence. At the lowest level of platform-independence, interaction is realized by interaction mechanisms provided by specific middleware platforms. At higher levels of platform-independence, interaction must be described in such a way that it can be further refined and realized onto a number of different middleware platforms, each with its particular interaction mechanisms and implementation constraints. In this paper, we investigate concepts that support interaction design at various levels of middleware-platform-independence. Also, we propose design operations for interaction refinement. The application of these operations to source designs results in target designs that take into account implementation constraints imposed by platforms, while preserving characteristics prescribed in source designs

    Platform-independent Dynamic Reconfiguration of Distributed Applications

    Get PDF
    The aim of dynamic reconfiguration is to allow a system to evolve incrementally from one configuration to another at run-time, without restarting it or taking it offline. In recent years, support for transparent dynamic reconfiguration has been added to middleware platforms, shifting the complexity required to enable dynamic reconfiguration to the supporting infrastructure. These approaches to dynamic reconfiguration are mostly platform-specific and depend on particular implementation approaches suitable for particular platforms. In this paper, we propose an approach to dynamic reconfiguration of distributed applications that is suitable for application implemented on top of different platforms. This approach supports a platform-independent view of an application that profits from reconfiguration transparency. In this view, requirements on the ability to reconfigure components are expressed in an abstract manner. These requirements are then satisfied by platform-specific realizations

    CaSPiS: A Calculus of Sessions, Pipelines and Services

    Get PDF
    Service-oriented computing is calling for novel computational models and languages with well disciplined primitives for client-server interaction, structured orchestration and unexpected events handling. We present CaSPiS, a process calculus where the conceptual abstractions of sessioning and pipelining play a central role for modelling service-oriented systems. CaSPiS sessions are two-sided, uniquely named and can be nested. CaSPiS pipelines permit orchestrating the flow of data produced by different sessions. The calculus is also equipped with operators for handling (unexpected) termination of the partner’s side of a session. Several examples are presented to provide evidence of the flexibility of the chosen set of primitives. One key contribution is a fully abstract encoding of Misra et al.’s orchestration language Orc. Another main result shows that in CaSPiS it is possible to program a “graceful termination” of nested sessions, which guarantees that no session is forced to hang forever after the loss of its partner

    Programming distributed and adaptable autonomous components--the GCM/ProActive framework

    Get PDF
    International audienceComponent-oriented software has become a useful tool to build larger and more complex systems by describing the application in terms of encapsulated, loosely coupled entities called components. At the same time, asynchronous programming patterns allow for the development of efficient distributed applications. While several component models and frameworks have been proposed, most of them tightly integrate the component model with the middleware they run upon. This intertwining is generally implicit and not discussed, leading to entangled, hard to maintain code. This article describes our efforts in the development of the GCM/ProActive framework for providing distributed and adaptable autonomous components. GCM/ProActive integrates a component model designed for execution on large-scale environments, with a programming model based on active objects allowing a high degree of distribution and concurrency. This new integrated model provides a more powerful development, composition, and execution environment than other distributed component frameworks. We illustrate that GCM/ProActive is particularly adapted to the programming of autonomic component systems, and to the integration into a service-oriented environment

    Using formal methods to develop WS-BPEL applications

    Get PDF
    In recent years, WS-BPEL has become a de facto standard language for orchestration of Web Services. However, there are still some well-known difficulties that make programming in WS-BPEL a tricky task. In this paper, we firstly point out major loose points of the WS-BPEL specification by means of many examples, some of which are also exploited to test and compare the behaviour of three of the most known freely available WS-BPEL engines. We show that, as a matter of fact, these engines implement different semantics, which undermines portability of WS-BPEL programs over different platforms. Then we introduce Blite, a prototypical orchestration language equipped with a formal operational semantics, which is closely inspired by, but simpler than, WS-BPEL. Indeed, Blite is designed around some of WS-BPEL distinctive features like partner links, process termination, message correlation, long-running business transactions and compensation handlers. Finally, we present BliteC, a software tool supporting a rapid and easy development of WS-BPEL applications via translation of service orchestrations written in Blite into executable WS-BPEL programs. We illustrate our approach by means of a running example borrowed from the official specification of WS-BPEL

    S-FaaS: Trustworthy and Accountable Function-as-a-Service using Intel SGX

    Full text link
    Function-as-a-Service (FaaS) is a recent and already very popular paradigm in cloud computing. The function provider need only specify the function to be run, usually in a high-level language like JavaScript, and the service provider orchestrates all the necessary infrastructure and software stacks. The function provider is only billed for the actual computational resources used by the function invocation. Compared to previous cloud paradigms, FaaS requires significantly more fine-grained resource measurement mechanisms, e.g. to measure compute time and memory usage of a single function invocation with sub-second accuracy. Thanks to the short duration and stateless nature of functions, and the availability of multiple open-source frameworks, FaaS enables non-traditional service providers e.g. individuals or data centers with spare capacity. However, this exacerbates the challenge of ensuring that resource consumption is measured accurately and reported reliably. It also raises the issues of ensuring computation is done correctly and minimizing the amount of information leaked to service providers. To address these challenges, we introduce S-FaaS, the first architecture and implementation of FaaS to provide strong security and accountability guarantees backed by Intel SGX. To match the dynamic event-driven nature of FaaS, our design introduces a new key distribution enclave and a novel transitive attestation protocol. A core contribution of S-FaaS is our set of resource measurement mechanisms that securely measure compute time inside an enclave, and actual memory allocations. We have integrated S-FaaS into the popular OpenWhisk FaaS framework. We evaluate the security of our architecture, the accuracy of our resource measurement mechanisms, and the performance of our implementation, showing that our resource measurement mechanisms add less than 6.3% latency on standardized benchmarks

    Patterns for Providing Real-Time Guarantees in DOC Middleware - Doctoral Dissertation, May 2002

    Get PDF
    The advent of open and widely adopted standards such as Common Object Request Broker Architecture (CORBA) [47] has simplified and standardized the development of distributed applications. For applications with real-time constraints, including avionics, manufacturing, and defense systems, these standards are evolving to include Quality-of-Service (QoS) specifications. Operating systems such as Real-time Linux [60] have responded with interfaces and algorithms to guarantee real-time response; similarly, languages such as Real-time Java [59] include mechanisms for specifying real-time properties for threads. However, the middleware upon which large distributed applications are based has not yet addressed end-to-end guarantees of QoS specifications. Unless this challenge can be met, developers must resort to ad hoc solutions that may not scale or migrate well among different platforms. This thesis provides two contributions to the study of real-time Distributed Object Computing (DOC) middleware. First, it identifies potential bottlenecks and problems with respect to guaranteeing real-time performance in contemporary middleware. Experimental results illustrate how these problems lead to incorrect real-time behavior in contemporary middleware platforms. Second, this thesis presents designs and techniques for providing real-time QoS guarantees in DOC middleware in the context of TAO [6], an open-source and widely adopted implementation of real-time CORBA. Architectural solutions presented here are coupled with empirical evaluations of end-to-end real-time behavior. Analysis of the problems, forces, solutions, and consequences are presented in terms of patterns and frame-works, so that solutions obtained for TAO can be appropriately applied to other real-time systems
    corecore