2,244 research outputs found

    Privacy-Aware Recommender Systems Challenge on Twitter's Home Timeline

    Full text link
    Recommender systems constitute the core engine of most social network platforms nowadays, aiming to maximize user satisfaction along with other key business objectives. Twitter is no exception. Despite the fact that Twitter data has been extensively used to understand socioeconomic and political phenomena and user behaviour, the implicit feedback provided by users on Tweets through their engagements on the Home Timeline has only been explored to a limited extent. At the same time, there is a lack of large-scale public social network datasets that would enable the scientific community to both benchmark and build more powerful and comprehensive models that tailor content to user interests. By releasing an original dataset of 160 million Tweets along with engagement information, Twitter aims to address exactly that. During this release, special attention is drawn on maintaining compliance with existing privacy laws. Apart from user privacy, this paper touches on the key challenges faced by researchers and professionals striving to predict user engagements. It further describes the key aspects of the RecSys 2020 Challenge that was organized by ACM RecSys in partnership with Twitter using this dataset.Comment: 16 pages, 2 table

    Cost-sensitive Learning for Utility Optimization in Online Advertising Auctions

    Full text link
    One of the most challenging problems in computational advertising is the prediction of click-through and conversion rates for bidding in online advertising auctions. An unaddressed problem in previous approaches is the existence of highly non-uniform misprediction costs. While for model evaluation these costs have been taken into account through recently proposed business-aware offline metrics -- such as the Utility metric which measures the impact on advertiser profit -- this is not the case when training the models themselves. In this paper, to bridge the gap, we formally analyze the relationship between optimizing the Utility metric and the log loss, which is considered as one of the state-of-the-art approaches in conversion modeling. Our analysis motivates the idea of weighting the log loss with the business value of the predicted outcome. We present and analyze a new cost weighting scheme and show that significant gains in offline and online performance can be achieved.Comment: First version of the paper was presented at NIPS 2015 Workshop on E-Commerce: https://sites.google.com/site/nips15ecommerce/papers Third version of the paper will be presented at AdKDD 2017 Workshop: adkdd17.wixsite.com/adkddtargetad201

    An Ensemble-based Approach to Click-Through Rate Prediction for Promoted Listings at Etsy

    Full text link
    Etsy is a global marketplace where people across the world connect to make, buy and sell unique goods. Sellers at Etsy can promote their product listings via advertising campaigns similar to traditional sponsored search ads. Click-Through Rate (CTR) prediction is an integral part of online search advertising systems where it is utilized as an input to auctions which determine the final ranking of promoted listings to a particular user for each query. In this paper, we provide a holistic view of Etsy's promoted listings' CTR prediction system and propose an ensemble learning approach which is based on historical or behavioral signals for older listings as well as content-based features for new listings. We obtain representations from texts and images by utilizing state-of-the-art deep learning techniques and employ multimodal learning to combine these different signals. We compare the system to non-trivial baselines on a large-scale real world dataset from Etsy, demonstrating the effectiveness of the model and strong correlations between offline experiments and online performance. The paper is also the first technical overview to this kind of product in e-commerce context

    Measuring, Characterizing, and Detecting Facebook Like Farms

    Get PDF
    Social networks offer convenient ways to seamlessly reach out to large audiences. In particular, Facebook pages are increasingly used by businesses, brands, and organizations to connect with multitudes of users worldwide. As the number of likes of a page has become a de-facto measure of its popularity and profitability, an underground market of services artificially inflating page likes, aka like farms, has emerged alongside Facebook's official targeted advertising platform. Nonetheless, there is little work that systematically analyzes Facebook pages' promotion methods. Aiming to fill this gap, we present a honeypot-based comparative measurement study of page likes garnered via Facebook advertising and from popular like farms. First, we analyze likes based on demographic, temporal, and social characteristics, and find that some farms seem to be operated by bots and do not really try to hide the nature of their operations, while others follow a stealthier approach, mimicking regular users' behavior. Next, we look at fraud detection algorithms currently deployed by Facebook and show that they do not work well to detect stealthy farms which spread likes over longer timespans and like popular pages to mimic regular users. To overcome their limitations, we investigate the feasibility of timeline-based detection of like farm accounts, focusing on characterizing content generated by Facebook accounts on their timelines as an indicator of genuine versus fake social activity. We analyze a range of features, grouped into two main categories: lexical and non-lexical. We find that like farm accounts tend to re-share content, use fewer words and poorer vocabulary, and more often generate duplicate comments and likes compared to normal users. Using relevant lexical and non-lexical features, we build a classifier to detect like farms accounts that achieves precision higher than 99% and 93% recall.Comment: To appear in ACM Transactions on Privacy and Security (TOPS

    Sequential Prediction of Social Media Popularity with Deep Temporal Context Networks

    Full text link
    Prediction of popularity has profound impact for social media, since it offers opportunities to reveal individual preference and public attention from evolutionary social systems. Previous research, although achieves promising results, neglects one distinctive characteristic of social data, i.e., sequentiality. For example, the popularity of online content is generated over time with sequential post streams of social media. To investigate the sequential prediction of popularity, we propose a novel prediction framework called Deep Temporal Context Networks (DTCN) by incorporating both temporal context and temporal attention into account. Our DTCN contains three main components, from embedding, learning to predicting. With a joint embedding network, we obtain a unified deep representation of multi-modal user-post data in a common embedding space. Then, based on the embedded data sequence over time, temporal context learning attempts to recurrently learn two adaptive temporal contexts for sequential popularity. Finally, a novel temporal attention is designed to predict new popularity (the popularity of a new user-post pair) with temporal coherence across multiple time-scales. Experiments on our released image dataset with about 600K Flickr photos demonstrate that DTCN outperforms state-of-the-art deep prediction algorithms, with an average of 21.51% relative performance improvement in the popularity prediction (Spearman Ranking Correlation).Comment: accepted in IJCAI-1

    POISED: Spotting Twitter Spam Off the Beaten Paths

    Get PDF
    Cybercriminals have found in online social networks a propitious medium to spread spam and malicious content. Existing techniques for detecting spam include predicting the trustworthiness of accounts and analyzing the content of these messages. However, advanced attackers can still successfully evade these defenses. Online social networks bring people who have personal connections or share common interests to form communities. In this paper, we first show that users within a networked community share some topics of interest. Moreover, content shared on these social network tend to propagate according to the interests of people. Dissemination paths may emerge where some communities post similar messages, based on the interests of those communities. Spam and other malicious content, on the other hand, follow different spreading patterns. In this paper, we follow this insight and present POISED, a system that leverages the differences in propagation between benign and malicious messages on social networks to identify spam and other unwanted content. We test our system on a dataset of 1.3M tweets collected from 64K users, and we show that our approach is effective in detecting malicious messages, reaching 91% precision and 93% recall. We also show that POISED's detection is more comprehensive than previous systems, by comparing it to three state-of-the-art spam detection systems that have been proposed by the research community in the past. POISED significantly outperforms each of these systems. Moreover, through simulations, we show how POISED is effective in the early detection of spam messages and how it is resilient against two well-known adversarial machine learning attacks

    Combating User Misbehavior on Social Media

    Get PDF
    Social media encourages user participation and facilitates user’s self-expression like never before. While enriching user behavior in a spectrum of means, many social media platforms have become breeding grounds for user misbehavior. In this dissertation we focus on understanding and combating three specific threads of user misbehaviors that widely exist on social media — spamming, manipulation, and distortion. First, we address the challenge of detecting spam links. Rather than rely on traditional blacklist-based or content-based methods, we examine the behavioral factors of both who is posting the link and who is clicking on the link. The core intuition is that these behavioral signals may be more difficult to manipulate than traditional signals. We find that this purely behavioral approach can achieve good performance for robust behavior-based spam link detection. Next, we deal with uncovering manipulated behavior of link sharing. We propose a four-phase approach to model, identify, characterize, and classify organic and organized groups who engage in link sharing. The key motivating insight is that group-level behavioral signals can distinguish manipulated user groups. We find that levels of organized behavior vary by link type and that the proposed approach achieves good performance measured by commonly-used metrics. Finally, we investigate a particular distortion behavior: making bullshit (BS) statements on social media. We explore the factors impacting the perception of BS and what leads users to ultimately perceive and call a post BS. We begin by preparing a crowdsourced collection of real social media posts that have been called BS. We then build a classification model that can determine what posts are more likely to be called BS. Our experiments suggest our classifier has the potential of leveraging linguistic cues for detecting social media posts that are likely to be called BS. We complement these three studies with a cross-cutting investigation of learning user topical profiles, which can shed light into what subjects each user is associated with, which can benefit the understanding of the connection between user and misbehavior. Concretely, we propose a unified model for learning user topical profiles that simultaneously considers multiple footprints and we show how these footprints can be embedded in a generalized optimization framework. Through extensive experiments on millions of real social media posts, we find our proposed models can effectively combat user misbehavior on social media
    • …
    corecore