151 research outputs found

    Developing Hybrid-Based Recommender System with NaĂŻve Bayes Optimization to Increase Prediction Efficiency

    Get PDF
    Commerce and entertainment world today have shifted to the digital platforms where customer preferences are suggested by recommender systems. Recommendations have been made using a variety of methods such as content-based, collaborative filtering-based or their hybrids. Collaborative systems are common recommenders, which use similar users’ preferences. They however have issues such as data sparsity, cold start problem and lack of scalability. When a small percentage of users express their preferences, data becomes highly sparse, thus affecting quality of recommendations. New users or items with no preferences, forms cold start issues affecting recommendations. High amount of sparse data affects how the user-item matrices are formed thus affecting the overall recommendation results. How to handle data input in the recommender engine while reducing data sparsity and increase its potential to scale up is proposed. This paper proposed development of hybrid model with data optimization using a Naïve Bayes classifier, with an aim of reducing data sparsity problem and a blend of collaborative filtering model and association rule mining-based ensembles, for recommending items with an aim of improving their predictions. Machine learning using python on Jupyter notebook was used to develop the hybrid. The models were tested using MovieLens 100k and 1M datasets. We demonstrate the final recommendations of the hybrid having new top ten highly rated movies with 68% approved recommendations. We confirm new items suggested to the active user(s) while less sparse data was input and an improved scaling up of collaborative filtering model, thus improving model efficacy and better predictions

    A scalable recommender system : using latent topics and alternating least squares techniques

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced AnalyticsA recommender system is one of the major techniques that handles information overload problem of Information Retrieval. Improves access and proactively recommends relevant information to each user, based on preferences and objectives. During the implementation and planning phases, designers have to cope with several issues and challenges that need proper attention. This thesis aims to show the issues and challenges in developing high-quality recommender systems. A paper solves a current research problem in the field of job recommendations using a distributed algorithmic framework built on top of Spark for parallel computation which allows the algorithm to scale linearly with the growing number of users. The final solution consists of two different recommenders which could be utilised for different purposes. The first method is mainly driven by latent topics among users, meanwhile the second technique utilises a latent factor algorithm that directly addresses the preference-confidence paradigm

    Recommendation in Enterprise 2.0 Social Media Streams

    Get PDF
    A social media stream allows users to share user-generated content as well as aggregate different external sources into one single stream. In Enterprise 2.0 such social media streams empower co-workers to share their information and to work efficiently and effectively together while replacing email communication. As more users share information it becomes impossible to read the complete stream leading to an information overload. Therefore, it is crucial to provide the users a personalized stream that suggests important and unread messages. The main characteristic of an Enterprise 2.0 social media stream is that co-workers work together on projects represented by topics: the stream is topic-centered and not user-centered as in public streams such as Facebook or Twitter. A lot of work has been done dealing with recommendation in a stream or for news recommendation. However, none of the current research approaches deal with the characteristics of an Enterprise 2.0 social media stream to recommend messages. The existing systems described in the research mainly deal with news recommendation for public streams and lack the applicability for Enterprise 2.0 social media streams. In this thesis a recommender concept is developed that allows the recommendation of messages in an Enterprise 2.0 social media stream. The basic idea is to extract features from a new message and use those features to compute a relevance score for a user. Additionally, those features are used to learn a user model and then use the user model for scoring new messages. This idea works without using explicit user feedback and assures a high user acceptance because no intense rating of messages is necessary. With this idea a content-based and collaborative-based approach is developed. To reflect the topic-centered streams a topic-specific user model is introduced which learns a user model independently for each topic. There are constantly new terms that occur in the stream of messages. For improving the quality of the recommendation (by finding more relevant messages) the recommender should be able to handle the new terms. Therefore, an approach is developed which adapts a user model if unknown terms occur by using terms of similar users or topics. Also, a short- and long-term approach is developed which tries to detect short-term interests of users. Only if the interest of a user occurs repeatedly over a certain time span are terms transferred to the long-term user model. The approaches are evaluated against a dataset obtained through an Enterprise 2.0 social media stream application. The evaluation shows the overall applicability of the concept. Specifically the evaluation shows that a topic-specific user model outperforms a global user model and also that adapting the user model according to similar users leads to an increase in the quality of the recommendation. Interestingly, the collaborative-based approach cannot reach the quality of the content-based approach

    A COLLABORATIVE FILTERING APPROACH TO PREDICT WEB PAGES OF INTEREST FROMNAVIGATION PATTERNS OF PAST USERS WITHIN AN ACADEMIC WEBSITE

    Get PDF
    This dissertation is a simulation study of factors and techniques involved in designing hyperlink recommender systems that recommend to users, web pages that past users with similar navigation behaviors found interesting. The methodology involves identification of pertinent factors or techniques, and for each one, addresses the following questions: (a) room for improvement; (b) better approach, if any; and (c) performance characteristics of the technique in environments that hyperlink recommender systems operate in. The following four problems are addressed:Web Page Classification. A new metric (PageRank Ă— Inverse Links-to-Word count ratio) is proposed for classifying web pages as content or navigation, to help in the discovery of user navigation behaviors from web user access logs. Results of a small user study suggest that this metric leads to desirable results.Data Mining. A new apriori algorithm for mining association rules from large databases is proposed. The new algorithm addresses the problem of scaling of the classical apriori algorithm by eliminating an expensive joinstep, and applying the apriori property to every row of the database. In this study, association rules show the correlation relationships between user navigation behaviors and web pages they find interesting. The new algorithm has better space complexity than the classical one, and better time efficiency under some conditionsand comparable time efficiency under other conditions.Prediction Models for User Interests. We demonstrate that association rules that show the correlation relationships between user navigation patterns and web pages they find interesting can be transformed intocollaborative filtering data. We investigate collaborative filtering prediction models based on two approaches for computing prediction scores: using simple averages and weighted averages. Our findings suggest that theweighted averages scheme more accurately computes predictions of user interests than the simple averages scheme does.Clustering. Clustering techniques are frequently applied in the design of personalization systems. We studied the performance of the CLARANS clustering algorithm in high dimensional space in relation to the PAM and CLARA clustering algorithms. While CLARA had the best time performance, CLARANS resulted in clusterswith the lowest intra-cluster dissimilarities, and so was most effective in this regard

    Enhancing reaction-based de novo design using a multi-label reaction class recommender

    Get PDF
    Reaction-based de novo design refers to the in-silico generation of novel chemical structures by combining reagents using structural transformations derived from known reactions. The driver for using reaction-based transformations is to increase the likelihood of the designed molecules being synthetically accessible. We have previously described a reaction-based de novo design method based on reaction vectors which are transformation rules that are encoded automatically from reaction databases. A limitation of reaction vectors is that they account for structural changes that occur at the core of a reaction only, and they do not consider the presence of competing functionalities that can compromise the reaction outcome. Here, we present the development of a Reaction Class Recommender to enhance the reaction vector framework. The recommender is intended to be used as a filter on the reaction vectors that are applied during de novo design to reduce the combinatorial explosion of in-silico molecules produced while limiting the generated structures to those which are most likely to be synthesisable. The recommender has been validated using an external data set extracted from the recent medicinal chemistry literature and in two simulated de novo design experiments. Results suggest that the use of the recommender drastically reduces the number of solutions explored by the algorithm while preserving the chance of finding relevant solutions and increasing the global synthetic accessibility of the designed molecules

    Service Recommendations with Deep Learning: A Study on Neural Collaborative Engines

    Get PDF
    Background: The present paper aims to investigate the adoption of Neural Networks for recommendation systems and to propose Deep Learning architectures as advanced frameworks for designing Collaborative Filtering engines. Recommendation systems are data-driven infrastructures which are widely adopted to create effective and cutting-edge smart services, allowing to personalize the value proposition and adapt it to changes and variations in customers’ preferences. Method: Our research represents an exploratory investigation on the adoption of Neural Networks for Recommendation Systems, inspired by the findings of a recent study on service science that highlighted the suitability of those models for designing cutting-edge recommenders capable of overcoming stable traditional benchmarks like the Singular Value Decomposition and the k-Nearest Neighbors algorithms. Following this study, we designed a more “complex” Feed-Forward Neural Network, trained on the “Movielens 100K” dataset using the Mean-Squared Error function to approximate the model loss generated and the Adaptive Moment Estimation algorithm (Adam) for the parameters optimization. Results: The results of this study demonstrate the primary role of Feed-Forward Neural Networks for designing advanced Collaborative recommenders, consolidating and even improving the outcomes of the work that inspired our research. Conclusion: Given these assumptions, we confirm the suitability of Feed-Forward Neural Networks as effective recommendation algorithms, laying the foundations for further studies in neural-based recommendation science

    Towards trust-aware recommendations in social networks

    Get PDF
    Recommender systems have been strongly researched within the last decade. With the emergence and popularization of social networks a new fi eld has been opened for social recommendations. Introducing new concepts such as trust and considering the network topology are some of the new strategies that recommender systems have to take into account in order to adapt their techniques to these new scenarios. In this thesis a simple model for recommendations on twitter is developed to apply some of the known techniques and explore how well the state of the art does in a real scenario. The thesis can serve as a basis for further social recommender system research

    Bias characterization, assessment, and mitigation in location-based recommender systems

    Full text link
    Location-Based Social Networks stimulated the rise of services such as Location-based Recommender Systems. These systems suggest to users points of interest (or venues) to visit when they arrive in a specific city or region. These recommendations impact various stakeholders in society, like the users who receive the recommendations and venue owners. Hence, if a recommender generates biased or polarized results, this affects in tangible ways both the experience of the users and the providers’ activities. In this paper, we focus on four forms of polarization, namely venue popularity, category popularity, venue exposure, and geographical distance. We characterize them on different families of recommendation algorithms when using a realistic (temporal-aware) offline evaluation methodology while assessing their existence. Besides, we propose two automatic approaches to mitigate those biases. Experimental results on real-world data show that these approaches are able to jointly improve the recommendation effectiveness, while alleviating these multiple polarizationsOpen Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work has been funded by the Ministerio de Ciencia e Innovación (reference PID2019-108965GB-I00) and by the European Social Fund (ESF), within the 2017 call for predoctoral contract
    • …
    corecore