300 research outputs found

    Classifying tree structures using elastic matching of sequence encodings

    Get PDF
    This document is the Accepted Manuscript version of the following article: Angeliki Skoura, Iosif Mporas, Vasileios Megalooikonomou, ‘Classifying tree structures using elastic matching of sequence encodings’, Neurocomputing, Vol. 163, pp. 151-159, February 2015. The Version of Record is available online at: DOI: https://doi.org/10.1016/j.neucom.2014.08.083. This Manuscript version is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/ ), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.Structures of tree topology are frequently encountered in nature and in a range of scientific domains. In this paper, a multi-step framework is presented to classify tree topologies introducing the idea of elastic matching of their sequence encodings. Initially, representative sequences of the branching topologies are obtained using node labeling and tree traversal schemes. The similarity between tree topologies is then quantified by applying elastic matching techniques. The resulting sequence alignment reveals corresponding node groups providing a better understanding of matching tree topologies. The new similarity approach is explored using various classification algorithms and is applied to a medical dataset outperforming state-of-the-art techniques by at least 6.6% and 3.5% in terms of absolute specificity and accuracy correspondingly.Peer reviewe

    Machine vision and the OMV

    Get PDF
    The orbital Maneuvering Vehicle (OMV) is intended to close with orbiting targets for relocation or servicing. It will be controlled via video signals and thruster activation based upon Earth or space station directives. A human operator is squarely in the middle of the control loop for close work. Without directly addressing future, more autonomous versions of a remote servicer, several techniques that will doubtless be important in a future increase of autonomy also have some direct application to the current situation, particularly in the area of image enhancement and predictive analysis. Several techniques are presentet, and some few have been implemented, which support a machine vision capability proposed to be adequate for detection, recognition, and tracking. Once feasibly implemented, they must then be further modified to operate together in real time. This may be achieved by two courses, the use of an array processor and some initial steps toward data reduction. The methodology or adapting to a vector architecture is discussed in preliminary form, and a highly tentative rationale for data reduction at the front end is also discussed. As a by-product, a working implementation of the most advanced graphic display technique, ray-casting, is described

    An integrated grammar-based approach for mathematical expression recognition

    Full text link
    This is the author’s version of a work that was accepted for publication in Pattern Recognition. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Pattern Recognition 51 (2016) 135–147. DOI 10.1016/j.patcog.2015.09.013.Automatic recognition of mathematical expressions is a challenging pattern recognition problem since there are many ambiguities at different levels. On the one hand, the recognition of the symbols of the mathematical expression. On the other hand, the detection of the two-dimensional structure that relates the symbols and represents the math expression. These problems are closely related since symbol recognition is influenced by the structure of the expression, while the structure strongly depends on the symbols that are recognized. For these reasons, we present an integrated approach that combines several stochastic sources of information and is able to globally determine the most likely expression. This way, symbol segmentation, symbol recognition and structural analysis are simultaneously optimized. In this paper we define the statistical framework of a model based on two-dimensional grammars and its associated parsing algorithm. Since the search space is too large, restrictions are introduced for making the search feasible. We have developed a system that implements this approach and we report results on the large public dataset of the CROHME international competition. This approach significantly outperforms other proposals and was awarded best system using only the training dataset of the competition. (C) 2015 Elsevier Ltd. All rights reserved.This work was partially supported by the Spanish MINECO under the STraDA research project (TIN2012-37475-C02-01) and the FPU Grant (AP2009-4363).Álvaro Muñoz, F.; Sánchez Peiró, JA.; Benedí Ruiz, JM. (2016). An integrated grammar-based approach for mathematical expression recognition. Pattern Recognition. 51:135-147. https://doi.org/10.1016/j.patcog.2015.09.013S1351475

    Query-Driven Global Graph Attention Model for Visual Parsing: Recognizing Handwritten and Typeset Math Formulas

    Get PDF
    We present a new visual parsing method based on standard Convolutional Neural Networks (CNNs) for handwritten and typeset mathematical formulas. The Query-Driven Global Graph Attention (QD-GGA) parser employs multi-task learning, using a single feature representation for locating, classifying, and relating symbols. QD-GGA parses formulas by first constructing a Line-Of-Sight (LOS) graph over the input primitives (e.g handwritten strokes or connected components in images). Second, class distributions for LOS nodes and edges are obtained using query-specific feature filters (i.e., attention) in a single feed-forward pass. This allows end-to-end structure learning using a joint loss over primitive node and edge class distributions. Finally, a Maximum Spanning Tree (MST) is extracted from the weighted graph using Edmonds\u27 Arborescence Algorithm. The model may be run recurrently over the input graph, updating attention to focus on symbols detected in the previous iteration. QD-GGA does not require additional grammar rules and the language model is learned from the sets of symbols/relationships and the statistics over them in the training set. We benchmark our system against both handwritten and typeset state-of-the-art math recognition systems. Our preliminary results show that this is a promising new approach for visual parsing of math formulas. Using recurrent execution, symbol detection is near perfect for both handwritten and typeset formulas: we obtain a symbol f-measure of over 99.4% for both the CROHME (handwritten) and INFTYMCCDB-2 (typeset formula image) datasets. Our method is also much faster in both training and execution than state-of-the-art RNN-based formula parsers. The unlabeled structure detection of QDGGA is competitive with encoder-decoder models, but QD-GGA symbol and relationship classification is weaker. We believe this may be addressed through increased use of spatial features and global context

    Making Presentation Math Computable

    Get PDF
    This Open-Access-book addresses the issue of translating mathematical expressions from LaTeX to the syntax of Computer Algebra Systems (CAS). Over the past decades, especially in the domain of Sciences, Technology, Engineering, and Mathematics (STEM), LaTeX has become the de-facto standard to typeset mathematical formulae in publications. Since scientists are generally required to publish their work, LaTeX has become an integral part of today's publishing workflow. On the other hand, modern research increasingly relies on CAS to simplify, manipulate, compute, and visualize mathematics. However, existing LaTeX import functions in CAS are limited to simple arithmetic expressions and are, therefore, insufficient for most use cases. Consequently, the workflow of experimenting and publishing in the Sciences often includes time-consuming and error-prone manual conversions between presentational LaTeX and computational CAS formats. To address the lack of a reliable and comprehensive translation tool between LaTeX and CAS, this thesis makes the following three contributions. First, it provides an approach to semantically enhance LaTeX expressions with sufficient semantic information for translations into CAS syntaxes. Second, it demonstrates the first context-aware LaTeX to CAS translation framework LaCASt. Third, the thesis provides a novel approach to evaluate the performance for LaTeX to CAS translations on large-scaled datasets with an automatic verification of equations in digital mathematical libraries. This is an open access book

    Computer Vision for Timber Harvesting

    Get PDF

    Kernel Methods for Tree Structured Data

    Get PDF
    Machine learning comprises a series of techniques for automatic extraction of meaningful information from large collections of noisy data. In many real world applications, data is naturally represented in structured form. Since traditional methods in machine learning deal with vectorial information, they require an a priori form of preprocessing. Among all the learning techniques for dealing with structured data, kernel methods are recognized to have a strong theoretical background and to be effective approaches. They do not require an explicit vectorial representation of the data in terms of features, but rely on a measure of similarity between any pair of objects of a domain, the kernel function. Designing fast and good kernel functions is a challenging problem. In the case of tree structured data two issues become relevant: kernel for trees should not be sparse and should be fast to compute. The sparsity problem arises when, given a dataset and a kernel function, most structures of the dataset are completely dissimilar to one another. In those cases the classifier has too few information for making correct predictions on unseen data. In fact, it tends to produce a discriminating function behaving as the nearest neighbour rule. Sparsity is likely to arise for some standard tree kernel functions, such as the subtree and subset tree kernel, when they are applied to datasets with node labels belonging to a large domain. A second drawback of using tree kernels is the time complexity required both in learning and classification phases. Such a complexity can sometimes prevents the kernel application in scenarios involving large amount of data. This thesis proposes three contributions for resolving the above issues of kernel for trees. A first contribution aims at creating kernel functions which adapt to the statistical properties of the dataset, thus reducing its sparsity with respect to traditional tree kernel functions. Specifically, we propose to encode the input trees by an algorithm able to project the data onto a lower dimensional space with the property that similar structures are mapped similarly. By building kernel functions on the lower dimensional representation, we are able to perform inexact matchings between different inputs in the original space. A second contribution is the proposal of a novel kernel function based on the convolution kernel framework. Convolution kernel measures the similarity of two objects in terms of the similarities of their subparts. Most convolution kernels are based on counting the number of shared substructures, partially discarding information about their position in the original structure. The kernel function we propose is, instead, especially focused on this aspect. A third contribution is devoted at reducing the computational burden related to the calculation of a kernel function between a tree and a forest of trees, which is a typical operation in the classification phase and, for some algorithms, also in the learning phase. We propose a general methodology applicable to convolution kernels. Moreover, we show an instantiation of our technique when kernels such as the subtree and subset tree kernels are employed. In those cases, Direct Acyclic Graphs can be used to compactly represent shared substructures in different trees, thus reducing the computational burden and storage requirements

    Mathematical Expression Recognition based on Probabilistic Grammars

    Full text link
    [EN] Mathematical notation is well-known and used all over the world. Humankind has evolved from simple methods representing countings to current well-defined math notation able to account for complex problems. Furthermore, mathematical expressions constitute a universal language in scientific fields, and many information resources containing mathematics have been created during the last decades. However, in order to efficiently access all that information, scientific documents have to be digitized or produced directly in electronic formats. Although most people is able to understand and produce mathematical information, introducing math expressions into electronic devices requires learning specific notations or using editors. Automatic recognition of mathematical expressions aims at filling this gap between the knowledge of a person and the input accepted by computers. This way, printed documents containing math expressions could be automatically digitized, and handwriting could be used for direct input of math notation into electronic devices. This thesis is devoted to develop an approach for mathematical expression recognition. In this document we propose an approach for recognizing any type of mathematical expression (printed or handwritten) based on probabilistic grammars. In order to do so, we develop the formal statistical framework such that derives several probability distributions. Along the document, we deal with the definition and estimation of all these probabilistic sources of information. Finally, we define the parsing algorithm that globally computes the most probable mathematical expression for a given input according to the statistical framework. An important point in this study is to provide objective performance evaluation and report results using public data and standard metrics. We inspected the problems of automatic evaluation in this field and looked for the best solutions. We also report several experiments using public databases and we participated in several international competitions. Furthermore, we have released most of the software developed in this thesis as open source. We also explore some of the applications of mathematical expression recognition. In addition to the direct applications of transcription and digitization, we report two important proposals. First, we developed mucaptcha, a method to tell humans and computers apart by means of math handwriting input, which represents a novel application of math expression recognition. Second, we tackled the problem of layout analysis of structured documents using the statistical framework developed in this thesis, because both are two-dimensional problems that can be modeled with probabilistic grammars. The approach developed in this thesis for mathematical expression recognition has obtained good results at different levels. It has produced several scientific publications in international conferences and journals, and has been awarded in international competitions.[ES] La notación matemática es bien conocida y se utiliza en todo el mundo. La humanidad ha evolucionado desde simples métodos para representar cuentas hasta la notación formal actual capaz de modelar problemas complejos. Además, las expresiones matemáticas constituyen un idioma universal en el mundo científico, y se han creado muchos recursos que contienen matemáticas durante las últimas décadas. Sin embargo, para acceder de forma eficiente a toda esa información, los documentos científicos han de ser digitalizados o producidos directamente en formatos electrónicos. Aunque la mayoría de personas es capaz de entender y producir información matemática, introducir expresiones matemáticas en dispositivos electrónicos requiere aprender notaciones especiales o usar editores. El reconocimiento automático de expresiones matemáticas tiene como objetivo llenar ese espacio existente entre el conocimiento de una persona y la entrada que aceptan los ordenadores. De este modo, documentos impresos que contienen fórmulas podrían digitalizarse automáticamente, y la escritura se podría utilizar para introducir directamente notación matemática en dispositivos electrónicos. Esta tesis está centrada en desarrollar un método para reconocer expresiones matemáticas. En este documento proponemos un método para reconocer cualquier tipo de fórmula (impresa o manuscrita) basado en gramáticas probabilísticas. Para ello, desarrollamos el marco estadístico formal que deriva varias distribuciones de probabilidad. A lo largo del documento, abordamos la definición y estimación de todas estas fuentes de información probabilística. Finalmente, definimos el algoritmo que, dada cierta entrada, calcula globalmente la expresión matemática más probable de acuerdo al marco estadístico. Un aspecto importante de este trabajo es proporcionar una evaluación objetiva de los resultados y presentarlos usando datos públicos y medidas estándar. Por ello, estudiamos los problemas de la evaluación automática en este campo y buscamos las mejores soluciones. Asimismo, presentamos diversos experimentos usando bases de datos públicas y hemos participado en varias competiciones internacionales. Además, hemos publicado como código abierto la mayoría del software desarrollado en esta tesis. También hemos explorado algunas de las aplicaciones del reconocimiento de expresiones matemáticas. Además de las aplicaciones directas de transcripción y digitalización, presentamos dos propuestas importantes. En primer lugar, desarrollamos mucaptcha, un método para discriminar entre humanos y ordenadores mediante la escritura de expresiones matemáticas, el cual representa una novedosa aplicación del reconocimiento de fórmulas. En segundo lugar, abordamos el problema de detectar y segmentar la estructura de documentos utilizando el marco estadístico formal desarrollado en esta tesis, dado que ambos son problemas bidimensionales que pueden modelarse con gramáticas probabilísticas. El método desarrollado en esta tesis para reconocer expresiones matemáticas ha obtenido buenos resultados a diferentes niveles. Este trabajo ha producido varias publicaciones en conferencias internacionales y revistas, y ha sido premiado en competiciones internacionales.[CA] La notació matemàtica és ben coneguda i s'utilitza a tot el món. La humanitat ha evolucionat des de simples mètodes per representar comptes fins a la notació formal actual capaç de modelar problemes complexos. A més, les expressions matemàtiques constitueixen un idioma universal al món científic, i s'han creat molts recursos que contenen matemàtiques durant les últimes dècades. No obstant això, per accedir de forma eficient a tota aquesta informació, els documents científics han de ser digitalitzats o produïts directament en formats electrònics. Encara que la majoria de persones és capaç d'entendre i produir informació matemàtica, introduir expressions matemàtiques en dispositius electrònics requereix aprendre notacions especials o usar editors. El reconeixement automàtic d'expressions matemàtiques té per objectiu omplir aquest espai existent entre el coneixement d'una persona i l'entrada que accepten els ordinadors. D'aquesta manera, documents impresos que contenen fórmules podrien digitalitzar-se automàticament, i l'escriptura es podria utilitzar per introduir directament notació matemàtica en dispositius electrònics. Aquesta tesi està centrada en desenvolupar un mètode per reconèixer expressions matemàtiques. En aquest document proposem un mètode per reconèixer qualsevol tipus de fórmula (impresa o manuscrita) basat en gramàtiques probabilístiques. Amb aquesta finalitat, desenvolupem el marc estadístic formal que deriva diverses distribucions de probabilitat. Al llarg del document, abordem la definició i estimació de totes aquestes fonts d'informació probabilística. Finalment, definim l'algorisme que, donada certa entrada, calcula globalment l'expressió matemàtica més probable d'acord al marc estadístic. Un aspecte important d'aquest treball és proporcionar una avaluació objectiva dels resultats i presentar-los usant dades públiques i mesures estàndard. Per això, estudiem els problemes de l'avaluació automàtica en aquest camp i busquem les millors solucions. Així mateix, presentem diversos experiments usant bases de dades públiques i hem participat en diverses competicions internacionals. A més, hem publicat com a codi obert la majoria del software desenvolupat en aquesta tesi. També hem explorat algunes de les aplicacions del reconeixement d'expressions matemàtiques. A més de les aplicacions directes de transcripció i digitalització, presentem dues propostes importants. En primer lloc, desenvolupem mucaptcha, un mètode per discriminar entre humans i ordinadors mitjançant l'escriptura d'expressions matemàtiques, el qual representa una nova aplicació del reconeixement de fórmules. En segon lloc, abordem el problema de detectar i segmentar l'estructura de documents utilitzant el marc estadístic formal desenvolupat en aquesta tesi, donat que ambdós són problemes bidimensionals que poden modelar-se amb gramàtiques probabilístiques. El mètode desenvolupat en aquesta tesi per reconèixer expressions matemàtiques ha obtingut bons resultats a diferents nivells. Aquest treball ha produït diverses publicacions en conferències internacionals i revistes, i ha sigut premiat en competicions internacionals.Álvaro Muñoz, F. (2015). Mathematical Expression Recognition based on Probabilistic Grammars [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/51665TESI

    Online Analysis of Dynamic Streaming Data

    Get PDF
    Die Arbeit zum Thema "Online Analysis of Dynamic Streaming Data" beschäftigt sich mit der Distanzmessung dynamischer, semistrukturierter Daten in kontinuierlichen Datenströmen um Analysen auf diesen Datenstrukturen bereits zur Laufzeit zu ermöglichen. Hierzu wird eine Formalisierung zur Distanzberechnung für statische und dynamische Bäume eingeführt und durch eine explizite Betrachtung der Dynamik von Attributen einzelner Knoten der Bäume ergänzt. Die Echtzeitanalyse basierend auf der Distanzmessung wird durch ein dichte-basiertes Clustering ergänzt, um eine Anwendung des Clustering, einer Klassifikation, aber auch einer Anomalieerkennung zu demonstrieren. Die Ergebnisse dieser Arbeit basieren auf einer theoretischen Analyse der eingeführten Formalisierung von Distanzmessungen für dynamische Bäume. Diese Analysen werden unterlegt mit empirischen Messungen auf Basis von Monitoring-Daten von Batchjobs aus dem Batchsystem des GridKa Daten- und Rechenzentrums. Die Evaluation der vorgeschlagenen Formalisierung sowie der darauf aufbauenden Echtzeitanalysemethoden zeigen die Effizienz und Skalierbarkeit des Verfahrens. Zudem wird gezeigt, dass die Betrachtung von Attributen und Attribut-Statistiken von besonderer Bedeutung für die Qualität der Ergebnisse von Analysen dynamischer, semistrukturierter Daten ist. Außerdem zeigt die Evaluation, dass die Qualität der Ergebnisse durch eine unabhängige Kombination mehrerer Distanzen weiter verbessert werden kann. Insbesondere wird durch die Ergebnisse dieser Arbeit die Analyse sich über die Zeit verändernder Daten ermöglicht
    corecore