1,697 research outputs found

    Learning Analogies and Semantic Relations

    Get PDF
    We present an algorithm for learning from unlabeled text, based on the Vector Space Model (VSM) of information retrieval, that can solve verbal analogy questions of the kind found in the Scholastic Aptitude Test (SAT). A verbal analogy has the form A:B::C:D, meaning "A is to B as C is to D"; for example, mason:stone::carpenter:wood. SAT analogy questions provide a word pair, A:B, and the problem is to select the most analogous word pair, C:D, from a set of five choices. The VSM algorithm correctly answers 47% of a collection of 374 college-level analogy questions (random guessing would yield 20% correct). We motivate this research by relating it to work in cognitive science and linguistics, and by applying it to a difficult problem in natural language processing, determining semantic relations in noun-modifier pairs. The problem is to classify a noun-modifier pair, such as "laser printer", according to the semantic relation between the noun (printer) and the modifier (laser). We use a supervised nearest-neighbour algorithm that assigns a class to a given noun-modifier pair by finding the most analogous noun-modifier pair in the training data. With 30 classes of semantic relations, on a collection of 600 labeled noun-modifier pairs, the learning algorithm attains an F value of 26.5% (random guessing: 3.3%). With 5 classes of semantic relations, the F value is 43.2% (random: 20%). The performance is state-of-the-art for these challenging problems

    Using distributional similarity to organise biomedical terminology

    Get PDF
    We investigate an application of distributional similarity techniques to the problem of structural organisation of biomedical terminology. Our application domain is the relatively small GENIA corpus. Using terms that have been accurately marked-up by hand within the corpus, we consider the problem of automatically determining semantic proximity. Terminological units are dened for our purposes as normalised classes of individual terms. Syntactic analysis of the corpus data is carried out using the Pro3Gres parser and provides the data required to calculate distributional similarity using a variety of dierent measures. Evaluation is performed against a hand-crafted gold standard for this domain in the form of the GENIA ontology. We show that distributional similarity can be used to predict semantic type with a good degree of accuracy

    A Uniform Approach to Analogies, Synonyms, Antonyms, and Associations

    Get PDF
    Recognizing analogies, synonyms, antonyms, and associations appear to be four\ud distinct tasks, requiring distinct NLP algorithms. In the past, the four\ud tasks have been treated independently, using a wide variety of algorithms.\ud These four semantic classes, however, are a tiny sample of the full\ud range of semantic phenomena, and we cannot afford to create ad hoc algorithms\ud for each semantic phenomenon; we need to seek a unified approach.\ud We propose to subsume a broad range of phenomena under analogies.\ud To limit the scope of this paper, we restrict our attention to the subsumption\ud of synonyms, antonyms, and associations. We introduce a supervised corpus-based\ud machine learning algorithm for classifying analogous word pairs, and we\ud show that it can solve multiple-choice SAT analogy questions, TOEFL\ud synonym questions, ESL synonym-antonym questions, and similar-associated-both\ud questions from cognitive psychology

    Classification of semantic relations in different syntactic structures in medical text using the MeSH hierarchy

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.Includes bibliographical references (leaf 38).Two different classification algorithms are evaluated in recognizing semantic relationships of different syntactic compounds. The compounds, which include noun- noun, adjective-noun, noun-adjective, noun-verb, and verb-noun, were extracted from a set of doctors' notes using a part of speech tagger and a parser. Each compound was labeled with a semantic relationship, and each word in the compound was mapped to its corresponding entry in the MeSH hierarchy. MeSH includes only medical terminology so it was extended to include everyday, non-medical terms. The two classification algorithms, neural networks and a classification tree, were trained and tested on the data set for each type of syntactic compound. Models representing different levels of MeSH were generated and fed into the neural networks. Both algorithms performed better than random guessing, and the classification tree performed better than the neural networks in predicting the semantic relationship between phrases from their syntactic structure.by Neha Bhooshan.M.Eng

    Typological parameters of genericity

    Get PDF
    Different languages employ different morphosyntactic devices for expressing genericity. And, of course, they also make use of different morphosyntactic and semantic or pragmatic cues which may contribute to the interpretation of a sentence as generic rather than episodic. [...] We will advance the strong hypo thesis that it is a fundamental property of lexical elements in natural language that they are neutral with respect to different modes of reference or non-reference. That is, we reject the idea that a certain use of a lexical element, e.g. a use which allows reference to particular spatio-temporally bounded objects in the world, should be linguistically prior to all other possible uses, e.g. to generic and non-specific uses. From this it follows that we do not consider generic uses as derived from non-generic uses as it is occasionally assumed in the literature. Rather, we regard these two possibilities of use as equivalent alternative uses of lexical elements. The typological differences to be noted therefore concern the formal and semantic relationship of generic and non-generic uses to each other; they do not pertain to the question of whether lexical elements are predetermined for one of these two uses. Even supposing we found a language where generic uses are always zero-marked and identical to lexical sterns, we would still not assume that lexical elements in this language primarily have a generic use from which the non-generic uses are derived. (Incidentally, none of the languages examined, not even Vietnamese, meets this criterion.

    Human-Level Performance on Word Analogy Questions by Latent Relational Analysis

    Get PDF
    This paper introduces Latent Relational Analysis (LRA), a method for measuring relational similarity. LRA has potential applications in many areas, including information extraction, word sense disambiguation, machine translation, and information retrieval. Relational similarity is correspondence between relations, in contrast with attributional similarity, which is correspondence between attributes. When two words have a high degree of attributional similarity, we call them synonyms. When two pairs of words have a high degree of relational similarity, we say that their relations are analogous. For example, the word pair mason/stone is analogous to the pair carpenter/wood; the relations between mason and stone are highly similar to the relations between carpenter and wood. Past work on semantic similarity measures has mainly been concerned with attributional similarity. For instance, Latent Semantic Analysis (LSA) can measure the degree of similarity between two words, but not between two relations. Recently the Vector Space Model (VSM) of information retrieval has been adapted to the task of measuring relational similarity, achieving a score of 47% on a collection of 374 college-level multiple-choice word analogy questions. In the VSM approach, the relation between a pair of words is characterized by a vector of frequencies of predefined patterns in a large corpus. LRA extends the VSM approach in three ways: (1) the patterns are derived automatically from the corpus (they are not predefined), (2) the Singular Value Decomposition (SVD) is used to smooth the frequency data (it is also used this way in LSA), and (3) automatically generated synonyms are used to explore reformulations of the word pairs. LRA achieves 56% on the 374 analogy questions, statistically equivalent to the average human score of 57%. On the related problem of classifying noun-modifier relations, LRA achieves similar gains over the VSM, while using a smaller corpus

    Similarity of Semantic Relations

    Get PDF
    There are at least two kinds of similarity. Relational similarity is correspondence between relations, in contrast with attributional similarity, which is correspondence between attributes. When two words have a high degree of attributional similarity, we call them synonyms. When two pairs of words have a high degree of relational similarity, we say that their relations are analogous. For example, the word pair mason:stone is analogous to the pair carpenter:wood. This paper introduces Latent Relational Analysis (LRA), a method for measuring relational similarity. LRA has potential applications in many areas, including information extraction, word sense disambiguation, and information retrieval. Recently the Vector Space Model (VSM) of information retrieval has been adapted to measuring relational similarity, achieving a score of 47% on a collection of 374 college-level multiple-choice word analogy questions. In the VSM approach, the relation between a pair of words is characterized by a vector of frequencies of predefined patterns in a large corpus. LRA extends the VSM approach in three ways: (1) the patterns are derived automatically from the corpus, (2) the Singular Value Decomposition (SVD) is used to smooth the frequency data, and (3) automatically generated synonyms are used to explore variations of the word pairs. LRA achieves 56% on the 374 analogy questions, statistically equivalent to the average human score of 57%. On the related problem of classifying semantic relations, LRA achieves similar gains over the VSM
    corecore