64 research outputs found

    Modelling topological features of swarm behaviour in space and time with persistence landscapes

    Get PDF
    This paper presents a model of swarm behaviour that encodes the spatial-temporal characteristics of topological features such as holes and connected components. Specifically, the persistence of topological features with respect to time are computed using zig-zag persistent homology. This information is in turn modelled as a persistence landscape which forms a normed vector space and facilitates the application of statistical and data mining techniques. Validation of the proposed model is performed using a real data set corresponding to a swarm of fish. It is demonstrated that the proposed model may be used to perform retrieval and clustering of swarm behaviour in terms of topological features. In fact, it is discovered that clustering returns clusters corresponding to the swarm behaviours of flock, torus and disordered. These are the most frequently occurring types of behaviour exhibited by swarms in general

    An innovative metaheuristic strategy for solar energy management through a neural networks framework

    Get PDF
    Proper management of solar energy as an effective renewable source is of high importance toward sustainable energy harvesting. This paper offers a novel sophisticated method for predicting solar irradiance (SIr) from environmental conditions. To this end, an efficient metaheuristic technique, namely electromagnetic field optimization (EFO), is employed for optimizing a neural network. This algorithm quickly mines a publicly available dataset for nonlinearly tuning the network parameters. To suggest an optimal configuration, five influential parameters of the EFO are optimized by an extensive trial and error practice. Analyzing the results showed that the proposed model can learn the SIr pattern and predict it for unseen conditions with high accuracy. Furthermore, it provided about 10% and 16% higher accuracy compared to two benchmark optimizers, namely shuffled complex evolution and shuffled frog leaping algorithm. Hence, the EFO-supervised neural network can be a promising tool for the early prediction of SIr in practice. The findings of this research may shed light on the use of advanced intelligent models for efficient energy development

    Artificial Intelligence in Civil Infrastructure Health Monitoring—historical Perspectives, Current Trends, and Future Visions

    Get PDF
    Over the past 2 decades, the use of artificial intelligence (AI) has exponentially increased toward complete automation of structural inspection and assessment tasks. This trend will continue to rise in image processing as unmanned aerial systems (UAS) and the internet of things (IoT) markets are expected to expand at a compound annual growth rate of 57.5% and 26%, respectively, from 2021 to 2028. This paper aims to catalog the milestone development work, summarize the current research trends, and envision a few future research directions in the innovative application of AI in civil infrastructure health monitoring. A blow-by-blow account of the major technology progression in this research field is provided in a chronological order. Detailed applications, key contributions, and performance measures of each milestone publication are presented. Representative technologies are detailed to demonstrate current research trends. A road map for future research is outlined to address contemporary issues such as explainable and physics-informed AI. This paper will provide readers with a lucid memoir of the historical progress, a good sense of the current trends, and a clear vision for future research

    International Conference on Civil Engineering,Infrastructure and Environment

    Get PDF
    UBT Annual International Conference is the 8th international interdisciplinary peer reviewed conference which publishes works of the scientists as well as practitioners in the area where UBT is active in Education, Research and Development. The UBT aims to implement an integrated strategy to establish itself as an internationally competitive, research-intensive university, committed to the transfer of knowledge and the provision of a world-class education to the most talented students from all background. The main perspective of the conference is to connect the scientists and practitioners from different disciplines in the same place and make them be aware of the recent advancements in different research fields, and provide them with a unique forum to share their experiences. It is also the place to support the new academic staff for doing research and publish their work in international standard level. This conference consists of sub conferences in different fields like: – Computer Science and Communication Engineering– Management, Business and Economics– Mechatronics, System Engineering and Robotics– Energy Efficiency Engineering– Information Systems and Security– Architecture – Spatial Planning– Civil Engineering , Infrastructure and Environment– Law– Political Science– Journalism , Media and Communication– Food Science and Technology– Pharmaceutical and Natural Sciences– Design– Psychology– Education and Development– Fashion– Music– Art and Digital Media– Dentistry– Applied Medicine– Nursing This conference is the major scientific event of the UBT. It is organizing annually and always in cooperation with the partner universities from the region and Europe. We have to thank all Authors, partners, sponsors and also the conference organizing team making this event a real international scientific event. Edmond Hajrizi, President of UBTUBT – Higher Education Institutio
    • …
    corecore