64 research outputs found

    A novel onset detection technique for brain?computer interfaces using sound-production related cognitive tasks in simulated-online system

    Get PDF
    Objective. Self-paced EEG-based BCIs (SP-BCIs) have traditionally been avoided due to two sources of uncertainty: (1) precisely when an intentional command is sent by the brain, i.e., the command onset detection problem, and (2) how different the intentional command is when compared to non-specific (or idle) states. Performance evaluation is also a problem and there are no suitable standard metrics available. In this paper we attempted to tackle these issues. Approach. Self-paced covert sound-production cognitive tasks (i.e., high pitch and siren-like sounds) were used to distinguish between intentional commands (IC) and idle states. The IC states were chosen for their ease of execution and negligible overlap with common cognitive states. Band power and a digital wavelet transform were used for feature extraction, and the Davies?Bouldin index was used for feature selection. Classification was performed using linear discriminant analysis. Main results. Performance was evaluated under offline and simulated-online conditions. For the latter, a performance score called true-false-positive (TFP) rate, ranging from 0 (poor) to 100 (perfect), was created to take into account both classification performance and onset timing errors. Averaging the results from the best performing IC task for all seven participants, an 77.7% true-positive (TP) rate was achieved in offline testing. For simulated-online analysis the best IC average TFP score was 76.67% (87.61% TP rate, 4.05% false-positive rate). Significance. Results were promising when compared to previous IC onset detection studies using motor imagery, in which best TP rates were reported as 72.0% and 79.7%, and which, crucially, did not take timing errors into account. Moreover, based on our literature review, there is no previous covert sound-production onset detection system for spBCIs. Results showed that the proposed onset detection technique and TFP performance metric have good potential for use in SP-BCIs

    A Novel Technique for Selecting EMG-Contaminated EEG Channels in Self-Paced Brain-Computer Interface Task Onset

    Get PDF
    Electromyography artefacts are a well-known problem in Electroencephalography studies (BCIs, brain mapping, and clinical areas). Blind source separation (BSS) techniques are commonly used to handle artefacts. However, these may remove not only EMG artefacts but also some useful EEG sources. To reduce this useful information loss, we propose a new technique for statistically selecting EEG channels that are contaminated with class-dependent EMG (henceforth called EMG-CCh). Methods: The EMG-CCh are selected based on the correlation between EEG and facial EMG channels. They were compared (using a Wilcoxon test) to determine whether the artefacts played a significant role in class separation. To ensure that promising results are not due to weak EMG removal, reliability tests were done. Results: In our data set, the comparison results between BSS artefact removal applied in two ways, to all channels and only to EMG-CCh, showed that ICA, PCA and BSS-CCA can yield significantly better (p<0.05) class separation with the proposed method (79% of the cases for ICA, 53% for PCA and 11% for BSS-CCA). With BCI competition data, we saw improvement in 60% of the cases for ICA and BSS-CCA. Conclusion: The simple method proposed in this paper showed improvement in class separation with both our data and the BCI competition data. Significance: There are no existing methods for removing EMG artefacts based on the correlation between EEG and EMG channels. Also, the EMG-CCh selection can be used on its own or it can be combined with pre-existing artefact handling methods. For these reasons, we believe this method can be useful for other EEG studies

    Sound-production Related Cognitive Tasks for Onset Detection in Self-Paced Brain-Computer Interfaces

    Get PDF
    Objective. The main goal of this research is proposing a novel method of onset detection for Self-Paced (SP) Brain-Computer Interfaces (BCIs) to increase usability and practicality of BCIs towards real-world uses from laboratory research settings. Approach. To achieve this goal, various Sound-Production Related Cognitive Tasks (SPRCTs) were tested against idle state in offline and simulated-online experiments. An online experiment was then conducted that turned a messenger dialogue on when a new message arrived by executing the Sound Imagery (SI) onset detection task in real-life scenarios (e.g. watching video, reading text). The SI task was chosen as an onset task because of its advantages over other tasks: 1) Intuitiveness. 2) Beneficial for people with motor disabilities. 3) No significant overlap with other common, spontaneous cognitive states becoming easier to use in daily-life situations. 4) No dependence on user’s mother language. Main results. The final online experimental results showed the new SI onset task had significantly better performance than the Motor Imagery (MI) approach. 84.04% (SI) vs 66.79% (MI) TFP score for sliding image scenario, 80.84% vs 61.07% for watching video task. Furthermore, the onset response speed showed the SI task being significantly faster than MI. In terms of usability, 75% of subjects answered SI was easier to use. Significance. The new SPRCT outperforms typical MI for SP onset detection BCIs (significantly better performance, faster onset response and easier usability), therefore it would be more easily used in daily-life situations. Another contribution of this thesis is a novel EMG artefact-contaminated EEG channel selection and handling method that showed significant class separation improvement against typical blind source separation techniques. A new performance evaluation metric for SP BCIs, called true-false positive score was also proposed as a standardised performance assessment method that considers idle period length, which was not considered in other typical metrics

    Comparison between covert sound-production task (sound-imagery) vs. motor-imagery for onset detection in real-life online self-paced BCIs

    Get PDF
    Background Even though the BCI field has quickly grown in the last few years, it is still mainly investigated as a research area. Increased practicality and usability are required to move BCIs to the real-world. Self-paced (SP) systems would reduce the problem but there is still the big challenge of what is known as the ‘onset detection problem’. Methods Our previous studies showed how a new sound-imagery (SI) task, high-tone covert sound production, is very effective for onset detection scenarios and we expect there are several advantages over most common asynchronous approaches used thus far, i.e., motor-imagery (MI): 1) Intuitiveness; 2) benefits to people with motor disabilities and, especially, those with lesions on cortical motor areas; and 3) no significant overlap with other common, spontaneous cognitive states, making it easier to use in daily-life situations. The approach was compared with MI tasks in online real-life scenarios, i.e., during activities such as watching videos and reading text. In our scenario, when a new message prompt from a messenger program appeared on the screen, participants watching a video (or reading text, browsing images) were asked to open the message by executing the SI or MI tasks, respectively, for each experimental condition. Results The results showed the SI task performed statistically significantly better than the MI approach: 84.04% (SI) vs 66.79 (MI) True-False positive rate for the sliding image scenario, 80.84% vs 61.07% for watching video. The classification performance difference between SI and MI was found not to be significant in the text-reading scenario. Furthermore, the onset response speed showed SI (4.08 s) being significantly faster than MI (5.46 s). In terms of basic usability, 75% of subjects found SI easier to use. Conclusions Our novel SI task outperforms typical MI for SP onset detection BCIs, therefore it would be more easily used in daily-life situations. This could be a significant step forward for the BCI field which has so far been mainly restricted to research-oriented indoor laboratory settings

    A novel EEG based linguistic BCI

    Get PDF
    While a human being can think coherently, physical limitations no matter how severe, should never become disabling. Thinking and cognition are performed and expressed through language, which is the most natural form of human communication. The use of covert speech tasks for BCIs has been successfully achieved for invasive and non-invasive systems. In this work, by incorporating the most recent discoveries on the spatial, temporal, and spectral signatures of word production, a novel system is designed, which is custom-build for linguistic tasks. Other than paying attention and waiting for the onset cue, this BCI requires absolutely no cognitive effort from the user and operates using automatic linguistic functions of the brain in the first 312ms post onset, which is also completely out of the control of the user and immune from inconsistencies. With four classes, this online BCI achieves classification accuracy of 82.5%. Each word produces a signature as unique as its phonetic structure, and the number of covert speech tasks used in this work is limited by computational power. We demonstrated that this BCI can successfully use wireless dry electrode EEG systems, which are becoming as capable as traditional laboratory grade systems. This frees the potential user from the confounds of the lab, facilitating real-world application. Considering that the number of words used in daily life does not exceed 2000, the number of words used by this type of novel BCI may indeed reach this number in the future, with no need to change the current system design or experimental protocol. As a promising step towards noninvasive synthetic telepathy, this system has the potential to not only help those in desperate need, but to completely change the way we communicate with our computers in the future as covert speech is much easier than any form of manual communication and control

    Neurolinguistics Research Advancing Development of a Direct-Speech Brain-Computer Interface

    Get PDF
    A direct-speech brain-computer interface (DS-BCI) acquires neural signals corresponding to imagined speech, then processes and decodes these signals to produce a linguistic output in the form of phonemes, words, or sentences. Recent research has shown the potential of neurolinguistics to enhance decoding approaches to imagined speech with the inclusion of semantics and phonology in experimental procedures. As neurolinguistics research findings are beginning to be incorporated within the scope of DS-BCI research, it is our view that a thorough understanding of imagined speech, and its relationship with overt speech, must be considered an integral feature of research in this field. With a focus on imagined speech, we provide a review of the most important neurolinguistics research informing the field of DS-BCI and suggest how this research may be utilized to improve current experimental protocols and decoding techniques. Our review of the literature supports a cross-disciplinary approach to DS-BCI research, in which neurolinguistics concepts and methods are utilized to aid development of a naturalistic mode of communication. : Cognitive Neuroscience; Computer Science; Hardware Interface Subject Areas: Cognitive Neuroscience, Computer Science, Hardware Interfac

    Classifying speech related vs. idle state towards onset detection in brain-computer interfaces overt, inhibited overt, and covert speech sound production vs. idle state

    No full text
    Onset detection is one of the main issues towards self-paced BCIs that can be used outside research settings. For this reason, this paper suggests a potential solution for onset detection problem by discriminating between speech related events. In this study, overt, inhibited overt and covert states were tested to classify from idle state in an off-line setting. Autoregressive model coefficients were used for feature extraction. The results showed that covert speech (vs. idle state) performed the best for all 4 participants. The true positive accuracies were 82.41%, 81.20%, 85.12% and 74.72%, respectively. The bit-transfer rates were 32.95, 16.24, 34.05 and 22.42 per minute, respectively. Compared to a previous study [1], which achieved around 73% accuracy with motor imagery versus idle, this study gave us satisfactory results

    Attention Restraint, Working Memory Capacity, and Mind Wandering: Do Emotional Valence or Intentionality Matter?

    Get PDF
    Attention restraint appears to mediate the relationship between working memory capacity (WMC) and mind wandering (Kane et al., 2016). Prior work has identifed two dimensions of mind wandering—emotional valence and intentionality. However, less is known about how WMC and attention restraint correlate with these dimensions. Te current study examined the relationship between WMC, attention restraint, and mind wandering by emotional valence and intentionality. A confrmatory factor analysis demonstrated that WMC and attention restraint were strongly correlated, but only attention restraint was related to overall mind wandering, consistent with prior fndings. However, when examining the emotional valence of mind wandering, attention restraint and WMC were related to negatively and positively valenced, but not neutral, mind wandering. Attention restraint was also related to intentional but not unintentional mind wandering. Tese results suggest that WMC and attention restraint predict some, but not all, types of mind wandering
    • …
    corecore