763 research outputs found

    Transfer Learning across Networks for Collective Classification

    Full text link
    This paper addresses the problem of transferring useful knowledge from a source network to predict node labels in a newly formed target network. While existing transfer learning research has primarily focused on vector-based data, in which the instances are assumed to be independent and identically distributed, how to effectively transfer knowledge across different information networks has not been well studied, mainly because networks may have their distinct node features and link relationships between nodes. In this paper, we propose a new transfer learning algorithm that attempts to transfer common latent structure features across the source and target networks. The proposed algorithm discovers these latent features by constructing label propagation matrices in the source and target networks, and mapping them into a shared latent feature space. The latent features capture common structure patterns shared by two networks, and serve as domain-independent features to be transferred between networks. Together with domain-dependent node features, we thereafter propose an iterative classification algorithm that leverages label correlations to predict node labels in the target network. Experiments on real-world networks demonstrate that our proposed algorithm can successfully achieve knowledge transfer between networks to help improve the accuracy of classifying nodes in the target network.Comment: Published in the proceedings of IEEE ICDM 201

    Learning Collective Behavior in Multi-relational Networks

    Get PDF
    With the rapid expansion of the Internet and WWW, the problem of analyzing social media data has received an increasing amount of attention in the past decade. The boom in social media platforms offers many possibilities to study human collective behavior and interactions on an unprecedented scale. In the past, much work has been done on the problem of learning from networked data with homogeneous topologies, where instances are explicitly or implicitly inter-connected by a single type of relationship. In contrast to traditional content-only classification methods, relational learning succeeds in improving classification performance by leveraging the correlation of the labels between linked instances. However, networked data extracted from social media, web pages, and bibliographic databases can contain entities of multiple classes and linked by various causal reasons, hence treating all links in a homogeneous way can limit the performance of relational classifiers. Learning the collective behavior and interactions in heterogeneous networks becomes much more complex. The contribution of this dissertation include 1) two classification frameworks for identifying human collective behavior in multi-relational social networks; 2) unsupervised and supervised learning models for relationship prediction in multi-relational collaborative networks. Our methods improve the performance of homogeneous predictive models by differentiating heterogeneous relations and capturing the prominent interaction patterns underlying the network structure. The work has been evaluated in various real-world social networks. We believe that this study will be useful for analyzing human collective behavior and interactions specifically in the scenario when the heterogeneous relationships in the network arise from various causal reasons

    HETEROGENEOUS DATA AND PROBABILISTIC SYSTEM MODEL ANALYSES FOR ENHANCED SITUATIONAL AWARENESS AND RESILIENCE OF CRITICAL INFRASTRUCTURE SYSTEMS

    Get PDF
    The protection and resilience of critical infrastructure systems (CIS) are essential for public safety in daily operations and times of crisis and for community preparedness to hazard events. Increasing situational awareness and resilience of CIS includes both comprehensive monitoring of CIS and their surroundings, as well as evaluating CIS behaviors in changing conditions and with different system configurations. Two frameworks for increasing the monitoring capabilities of CIS are presented. The proposed frameworks are (1) a process for classifying social media big data for monitoring CIS and hazard events and (2) a framework for integrating heterogeneous data sources, including social media, using Bayesian inference to update prior probabilities of event occurrence. Applications of both frameworks are presented, including building and evaluating text-based machine learning classifiers for identifying CIS damages and integrating disparate data sources to estimate hazards and CIS damages. Probabilistic analyses of CIS vulnerabilities with varying system parameters and topologies are also presented. In a water network, the impact of varying parameters on component performance is evaluated. In multiple, small-size water networks, the impacts of system topology are assessed to identify characteristics of more resilient networks. This body of work contributes insights and methods for monitoring CIS and assessing their performance. Integrating heterogeneous data sources increases situational awareness of CIS, especially during or after failure events, and evaluating the sensitivity of CIS outcomes to changes in the network facilitates decisions for CIS investments and emergency response.Ph.D

    Node Classification in Social Networks

    Full text link
    When dealing with large graphs, such as those that arise in the context of online social networks, a subset of nodes may be labeled. These labels can indicate demographic values, interest, beliefs or other characteristics of the nodes (users). A core problem is to use this information to extend the labeling so that all nodes are assigned a label (or labels). In this chapter, we survey classification techniques that have been proposed for this problem. We consider two broad categories: methods based on iterative application of traditional classifiers using graph information as features, and methods which propagate the existing labels via random walks. We adopt a common perspective on these methods to highlight the similarities between different approaches within and across the two categories. We also describe some extensions and related directions to the central problem of node classification.Comment: To appear in Social Network Data Analytics (Springer) Ed. Charu Aggarwal, March 201

    Web Page Classification and Hierarchy Adaptation

    Get PDF
    • …
    corecore