621 research outputs found

    A robust machine learning approach for the prediction of allosteric binding sites

    Get PDF
    Previously held under moratorium from 28 March 2017 until 28 March 2022Allosteric regulatory sites are highly prized targets in drug discovery. They remain difficult to detect by conventional methods, with the vast majority of known examples being found serendipitously. Herein, a rigorous, wholly-computational protocol is presented for the prediction of allosteric sites. Previous attempts to predict the location of allosteric sites by computational means drew on only a small amount of data. Moreover, no attempt was made to modify the initial crystal structure beyond the in silico deletion of the allosteric ligand. This behaviour can leave behind a conformation with a significant structural deformation, often betraying the location of the allosteric binding site. Despite this artificial advantage, modest success rates are observed at best. This work addresses both of these issues. A set of 60 protein crystal structures with known allosteric modulators was collected. To remove the imprint on protein structure caused by the presence of bound modulators, molecular dynamics was performed on each protein prior to analysis. A wide variety of analytical techniques were then employed to extract meaningful data from the trajectories. Upon fusing them into a single, coherent dataset, random forest - a machine learning algorithm - was applied to train a high performance classification model. After successive rounds of optimisation, the final model presented in this work correctly identified the allosteric site for 72% of the proteins tested. This is not only an improvement over alternative strategies in the literature; crucially, this method is unique among site prediction tools in that is does not abuse crystal structures containing imprints of bound ligands - of key importance when making live predictions, where no allosteric regulatory sites are known.Allosteric regulatory sites are highly prized targets in drug discovery. They remain difficult to detect by conventional methods, with the vast majority of known examples being found serendipitously. Herein, a rigorous, wholly-computational protocol is presented for the prediction of allosteric sites. Previous attempts to predict the location of allosteric sites by computational means drew on only a small amount of data. Moreover, no attempt was made to modify the initial crystal structure beyond the in silico deletion of the allosteric ligand. This behaviour can leave behind a conformation with a significant structural deformation, often betraying the location of the allosteric binding site. Despite this artificial advantage, modest success rates are observed at best. This work addresses both of these issues. A set of 60 protein crystal structures with known allosteric modulators was collected. To remove the imprint on protein structure caused by the presence of bound modulators, molecular dynamics was performed on each protein prior to analysis. A wide variety of analytical techniques were then employed to extract meaningful data from the trajectories. Upon fusing them into a single, coherent dataset, random forest - a machine learning algorithm - was applied to train a high performance classification model. After successive rounds of optimisation, the final model presented in this work correctly identified the allosteric site for 72% of the proteins tested. This is not only an improvement over alternative strategies in the literature; crucially, this method is unique among site prediction tools in that is does not abuse crystal structures containing imprints of bound ligands - of key importance when making live predictions, where no allosteric regulatory sites are known

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF

    Classification of Protein-Binding Sites Using a Spherical Convolutional Neural Network

    Get PDF
    The analysis and comparison of protein-binding sites aid various applications in the drug discovery process, e.g., hit finding, drug repurposing, and polypharmacology. Classification of binding sites has been a hot topic for the past 30 years, and many different methods have been published. The rapid development of machine learning computational algorithms, coupled with the large volume of publicly available protein–ligand 3D structures, makes it possible to apply deep learning techniques in binding site comparison. Our method uses a cutting-edge spherical convolutional neural network based on the DeepSphere architecture to learn global representations of protein-binding sites. The model was trained on TOUGH-C1 and TOUGH-M1 data and validated with the ProSPECCTs datasets. Our results show that our model can (1) perform well in protein-binding site similarity and classification tasks and (2) learn and separate the physicochemical properties of binding sites. Lastly, we tested the model on a set of kinases, where the results show that it is able to cluster the different kinase subfamilies effectively. This example demonstrates the method’s promise for lead hopping within or outside a protein target, directly based on binding site information

    Discovering RNA-Protein Interactome by Using Chemical Context Profiling of the RNA-Protein Interface

    Get PDF
    SummaryRNA-protein (RNP) interactions generally are required for RNA function. At least 5% of human genes code for RNA-binding proteins. Whereas many approaches can identify the RNA partners for a specific protein, finding the protein partners for a specific RNA is difficult. We present a machine-learning method that scores a protein’s binding potential for an RNA structure by utilizing the chemical context profiles of the interface from known RNP structures. Our approach is applicable even when only a single RNP structure is available. We examined 801 mammalian proteins and find that 37 (4.6%) potentially bind transfer RNA (tRNA). Most are enzymes involved in cellular processes unrelated to translation and were not known to interact with RNA. We experimentally tested six positive and three negative predictions for tRNA binding in vivo, and all nine predictions were correct. Our computational approach provides a powerful complement to experiments in discovering new RNPs
    • …
    corecore