2,083 research outputs found

    The Complexity of Surjective Homomorphism Problems -- a Survey

    Get PDF
    We survey known results about the complexity of surjective homomorphism problems, studied in the context of related problems in the literature such as list homomorphism, retraction and compaction. In comparison with these problems, surjective homomorphism problems seem to be harder to classify and we examine especially three concrete problems that have arisen from the literature, two of which remain of open complexity

    Curious properties of free hypergraph C*-algebras

    Full text link
    A finite hypergraph HH consists of a finite set of vertices V(H)V(H) and a collection of subsets E(H)⊆2V(H)E(H) \subseteq 2^{V(H)} which we consider as partition of unity relations between projection operators. These partition of unity relations freely generate a universal C*-algebra, which we call the "free hypergraph C*-algebra" C∗(H)C^*(H). General free hypergraph C*-algebras were first studied in the context of quantum contextuality. As special cases, the class of free hypergraph C*-algebras comprises quantum permutation groups, maximal group C*-algebras of graph products of finite cyclic groups, and the C*-algebras associated to quantum graph homomorphism, isomorphism, and colouring. Here, we conduct the first systematic study of aspects of free hypergraph C*-algebras. We show that they coincide with the class of finite colimits of finite-dimensional commutative C*-algebras, and also with the class of C*-algebras associated to synchronous nonlocal games. We had previously shown that it is undecidable to determine whether C∗(H)C^*(H) is nonzero for given HH. We now show that it is also undecidable to determine whether a given C∗(H)C^*(H) is residually finite-dimensional, and similarly whether it only has infinite-dimensional representations, and whether it has a tracial state. It follows that for each one of these properties, there is HH such that the question whether C∗(H)C^*(H) has this property is independent of the ZFC axioms, assuming that these are consistent. We clarify some of the subtleties associated with such independence results in an appendix.Comment: 19 pages. v2: minor clarifications. v3: terminology 'free hypergraph C*-algebra', added Remark 2.2

    The complexity of the list homomorphism problem for graphs

    Get PDF
    We completely classify the computational complexity of the list H-colouring problem for graphs (with possible loops) in combinatorial and algebraic terms: for every graph H the problem is either NP-complete, NL-complete, L-complete or is first-order definable; descriptive complexity equivalents are given as well via Datalog and its fragments. Our algebraic characterisations match important conjectures in the study of constraint satisfaction problems.Comment: 12 pages, STACS 201
    • …
    corecore