245 research outputs found

    Precision Poultry Farming

    Get PDF
    This book presents the latest advances in applications of continuous, objective, and automated sensing technologies and computer tools for sustainable and efficient poultry production, and it offers solutions to the poultry industry to address challenges in terms of poultry management, the environment, nutrition, automation and robotics, health, welfare assessment, behavior monitoring, waste management, etc. The reader will find original research papers that address, on a global scale, the sustainability and efficiency of the poultry industry and explore the above-mentioned areas through applications of PPF solutions in poultry meat and egg productio

    Farmers' Perspectives of the Benefits and Risks in Precision Livestock Farming in the EU Pig and Poultry Sectors

    Get PDF
    Simple Summary Smart farming is a concept of agricultural innovation that combines technological, social, economic and institutional changes. It employs novel practices of technologies and farm management at various levels (specifically with a focus on the system perspective) and scales of agricultural production, helping the industry meet the challenges stemming from immense food production demands, environmental impact mitigation and reductions in the workforce. Precision Livestock Farming (PLF) systems will help the industry meet consumer expectations for more environmentally and welfare-friendly production. However, the overwhelming majority of these new technologies originate from outside the farm sector. The adoption of new technologies is affected by the development, dissemination and application of new methodologies, technologies and regulations at the farm level, as well as quantified business models. Subsequently, the utilization of PLF in the pig and especially the poultry sectors should be advocated (the latter due to the foreseen increase in meat production). Therefore, more significant research efforts than those that currently exist are mainly required in the poultry industry. The investigation of farmers' attitudes and concerns about the acceptance of technological solutions in the livestock sector should be integrally incorporated into any technological development.Abstract More efficient livestock production systems are necessary, considering that only 41% of global meat demand will be met by 2050. Moreover, the COVID-19 pandemic crisis has clearly illustrated the necessity of building sustainable and stable agri-food systems. Precision Livestock Farming (PLF) offers the continuous capacity of agriculture to contribute to overall human and animal welfare by providing sufficient goods and services through the application of technical innovations like digitalization. However, adopting new technologies is a challenging issue for farmers, extension services, agri-business and policymakers. We present a review of operational concepts and technological solutions in the pig and poultry sectors, as reflected in 41 and 16 European projects from the last decade, respectively. The European trend of increasing broiler-meat production, which is soon to outpace pork, stresses the need for more outstanding research efforts in the poultry industry. We further present a review of farmers' attitudes and obstacles to the acceptance of technological solutions in the pig and poultry sectors using examples and lessons learned from recent European projects. Despite the low resonance at the research level, the investigation of farmers' attitudes and concerns regarding the acceptance of technological solutions in the livestock sector should be incorporated into any technological development

    The Relationships between Damaging Behaviours and Health in Laying Hens

    Get PDF
    Since the ban in January 2012 of conventional cages for egg production in the European Union (Council Directive 1999/74/EC), alternative systems such as floor, aviary, free-range, and organic systems have become increasingly common, reaching 50% of housing for hens in 2019. Despite the many advantages associated with non-cage systems, the shift to a housing system where laying hens are kept in larger groups and more complex environments has given rise to new challenges related to management, health, and welfare. This review examines the close relationships between damaging behaviours and health in modern husbandry systems for laying hens. These new housing conditions increase social interactions between animals. In cases of suboptimal rearing and/or housing and management conditions, damaging behaviour or infectious diseases are likely to spread to the whole flock. Additionally, health issues, and therefore stimulation of the immune system, may lead to the development of damaging behaviours, which in turn may result in impaired body conditions, leading to health and welfare issues. This raises the need to monitor both behaviour and health of laying hens in order to intervene as quickly as possible to preserve both the welfare and health of the animals

    The Relationships between Damaging Behaviours and Health in Laying Hens

    Get PDF
    Since the ban in January 2012 of conventional cages for egg production in the European Union (Council Directive 1999/74/EC), alternative systems such as floor, aviary, free-range, and organic systems have become increasingly common, reaching 50% of housing for hens in 2019. Despite the many advantages associated with non-cage systems, the shift to a housing system where laying hens are kept in larger groups and more complex environments has given rise to new challenges related to management, health, and welfare. This review examines the close relationships between damaging behaviours and health in modern husbandry systems for laying hens. These new housing conditions increase social interactions between animals. In cases of suboptimal rearing and/or housing and management conditions, damaging behaviour or infectious diseases are likely to spread to the whole flock. Additionally, health issues, and therefore stimulation of the immune system, may lead to the development of damaging behaviours, which in turn may result in impaired body conditions, leading to health and welfare issues. This raises the need to monitor both behaviour and health of laying hens in order to intervene as quickly as possible to preserve both the welfare and health of the animals

    Farm Animals’ Behaviors and Welfare Analysis with AI Algorithms: A Review

    Full text link
    peer reviewedNumerous bibliographic reviews related to the use of AI for the behavioral detection of farm animals exist, but they only focus on a particular type of animal. We believe that some techniques were used for some animals that could also be used for other types of animals. The application and comparison of these techniques between animal species are rarely done. In this paper, we propose a review of machine learning approaches used for the detection of farm animals’ behaviors such as lameness, grazing, rumination, and so on. The originality of this paper is matched classification in the midst of sensors and algorithms used for each animal category. First, we highlight the most implemented approaches for different categories of animals (cows, sheep, goats, pigs, horses, and chickens) to inspire researchers interested to conduct investigation and employ the methods we have evaluated and the results we have obtained in this study. Second, we describe the current trends in terms of technological development and new paradigms that will impact the AI research. Finally, we critically analyze what is done and we draw new pathways of research to advance our understanding of animal’s behaviors

    Alternative protein sources for organic poultry

    Get PDF

    Deep learning in agriculture: A survey

    Get PDF
    Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.info:eu-repo/semantics/acceptedVersio
    • …
    corecore