20 research outputs found

    3D Object Recognition Based On Constrained 2D Views

    Get PDF
    The aim of the present work was to build a novel 3D object recognition system capable of classifying man-made and natural objects based on single 2D views. The approach to this problem has been one motivated by recent theories on biological vision and multiresolution analysis. The project's objectives were the implementation of a system that is able to deal with simple 3D scenes and constitutes an engineering solution to the problem of 3D object recognition, allowing the proposed recognition system to operate in a practically acceptable time frame. The developed system takes further the work on automatic classification of marine phytoplank- (ons, carried out at the Centre for Intelligent Systems, University of Plymouth. The thesis discusses the main theoretical issues that prompted the fundamental system design options. The principles and the implementation of the coarse data channels used in the system are described. A new multiresolution representation of 2D views is presented, which provides the classifier module of the system with coarse-coded descriptions of the scale-space distribution of potentially interesting features. A multiresolution analysis-based mechanism is proposed, which directs the system's attention towards potentially salient features. Unsupervised similarity-based feature grouping is introduced, which is used in coarse data channels to yield feature signatures that are not spatially coherent and provide the classifier module with salient descriptions of object views. A simple texture descriptor is described, which is based on properties of a special wavelet transform. The system has been tested on computer-generated and natural image data sets, in conditions where the inter-object similarity was monitored and quantitatively assessed by human subjects, or the analysed objects were very similar and their discrimination constituted a difficult task even for human experts. The validity of the above described approaches has been proven. The studies conducted with various statistical and artificial neural network-based classifiers have shown that the system is able to perform well in all of the above mentioned situations. These investigations also made possible to take further and generalise a number of important conclusions drawn during previous work carried out in the field of 2D shape (plankton) recognition, regarding the behaviour of multiple coarse data channels-based pattern recognition systems and various classifier architectures. The system possesses the ability of dealing with difficult field-collected images of objects and the techniques employed by its component modules make possible its extension to the domain of complex multiple-object 3D scene recognition. The system is expected to find immediate applicability in the field of marine biota classification

    Human inspired pattern recognition via local invariant features

    Get PDF
    Vision is increasingly becoming a vital element in the manufacturing industry. As complex as it already is, vision is becoming even more difficult to implement in a pattern recognition environment as it converges toward the level of what humans visualize. Relevant brain work technologies are allowing vision systems to add capability and tasks that were long reserved for humans. The ability to recognize patterns like humans do is a good goal in terms of performance metrics for manufacturing activities. To achieve this goal, we created a neural network that achieves pattern recognition analogous to the human visual cortex using high quality keypoints by optimizing the scale space and pairing keypoints with edges as input into the model. This research uses the Taguchi Design of Experiments approach to find optimal values for the SIFT parameters with respect to finding correct matches between images that vary in rotation and scale. The approach used the Taguchi L18 matrix to determine the optimal parameter set. The performance obtained from SIFT using the optimal solution was compared with the performance from the original SIFT algorithm parameters. It is shown that correct matches between an original image and a scaled, rotated, or scaled and rotated version of that image improves by 17% using the optimal values of the SIFT. A human inspired approach was used to create a CMAC based neural network capable of pattern recognition. A comparison of 3 object, 30 object, and 50 object scenes were examined using edge and optimized SIFT based features as inputs and produced extensible results from 3 to 50 objects based on classification performance. The classification results prove that we achieve a high level of pattern recognition that ranged from 96.1% to 100% for objects under consideration. The result is a pattern recognition model capable of locally based classification based on invariant information without the need for sets of information that include input sensory data that is not necessarily invariant (background data, raw pixel data, viewpoint angles) that global models rely on in pattern recognition

    The Role of Knowledge in Visual Shape Representation

    Get PDF
    This report shows how knowledge about the visual world can be built into a shape representation in the form of a descriptive vocabulary making explicit the important geometrical relationships comprising objects' shapes. Two computational tools are offered: (1) Shapestokens are placed on a Scale-Space Blackboard, (2) Dimensionality-reduction captures deformation classes in configurations of tokens. Knowledge lies in the token types and deformation classes tailored to the constraints and regularities ofparticular shape worlds. A hierarchical shape vocabulary has been implemented supporting several later visual tasks in the two-dimensional shape domain of the dorsal fins of fishes

    Image categorisation using parallel network constructs: an emulation of early human colour processing and context evaluation

    Get PDF
    PhD ThesisTraditional geometric scene analysis cannot attempt to address the understanding of human vision. Instead it adopts an algorithmic approach, concentrating on geometric model fitting. Human vision, however, is both quick and accurate but very little is known about how the recognition of objects is performed with such speed and efficiency. It is thought that there must be some process both for coding and storage which can account for these characteristics. In this thesis a more strict emulation of human vision, based on work derived from medical psychology and other fields, is proposed. Human beings must store perceptual information from which to make comparisons, derive structures and classify objects. It is widely thought by cognitive psychologists that some form of symbolic representation is inherent in this storage. Here a mathematical syntax is defined to perform this kind of symbolic description. The symbolic structures must be capable of manipulation and a set of operators is defined for this purpose. The early visual cortex and geniculate body are both inherently parallel in operation and simple in structure. A broadly connectionist emulation of this kind of structure is described, using independent computing elements, which can perform segmentation, re-colouring and generation of the base elements of the description syntax. Primal colour information is then collected by a second network which forms the visual topology, colouring and position information of areas in the image as well as a full description of the scene in terms of a more complex symbolic set. The idea of different visual contexts is introduced and a model is proposed for the accumulation of context rules. This model is then applied to a database of natural images.EPSRC CASE award: Neural Computer Sciences,Southampton

    From surfaces to objects : Recognizing objects using surface information and object models.

    Get PDF
    This thesis describes research on recognizing partially obscured objects using surface information like Marr's 2D sketch ([MAR82]) and surface-based geometrical object models. The goal of the recognition process is to produce a fully instantiated object hypotheses, with either image evidence for each feature or explanations for their absence, in terms of self or external occlusion. The central point of the thesis is that using surface information should be an important part of the image understanding process. This is because surfaces are the features that directly link perception to the objects perceived (for normal "camera-like" sensing) and because surfaces make explicit information needed to understand and cope with some visual problems (e.g. obscured features). Further, because surfaces are both the data and model primitive, detailed recognition can be made both simpler and more complete. Recognition input is a surface image, which represents surface orientation and absolute depth. Segmentation criteria are proposed for forming surface patches with constant curvature character, based on surface shape discontinuities which become labeled segmentation- boundaries. Partially obscured object surfaces are reconstructed using stronger surface based constraints. Surfaces are grouped to form surface clusters, which are 3D identity-independent solids that often correspond to model primitives. These are used here as a context within which to select models and find all object features. True three-dimensional properties of image boundaries, surfaces and surface clusters are directly estimated using the surface data. Models are invoked using a network formulation, where individual nodes represent potential identities for image structures. The links between nodes are defined by generic and structural relationships. They define indirect evidence relationships for an identity. Direct evidence for the identities comes from the data properties. A plausibility computation is defined according to the constraints inherent in the evidence types. When a node acquires sufficient plausibility, the model is invoked for the corresponding image structure.Objects are primarily represented using a surface-based geometrical model. Assemblies are formed from subassemblies and surface primitives, which are defined using surface shape and boundaries. Variable affixments between assemblies allow flexibly connected objects. The initial object reference frame is estimated from model-data surface relationships, using correspondences suggested by invocation. With the reference frame, back-facing, tangential, partially self-obscured, totally self-obscured and fully visible image features are deduced. From these, the oriented model is used for finding evidence for missing visible model features. IT no evidence is found, the program attempts to find evidence to justify the features obscured by an unrelated object. Structured objects are constructed using a hierarchical synthesis process. Fully completed hypotheses are verified using both existence and identity constraints based on surface evidence. Each of these processes is defined by its computational constraints and are demonstrated on two test images. These test scenes are interesting because they contain partially and fully obscured object features, a variety of surface and solid types and flexibly connected objects. All modeled objects were fully identified and analyzed to the level represented in their models and were also acceptably spatially located. Portions of this work have been reported elsewhere ([FIS83], [FIS85a], [FIS85b], [FIS86]) by the author

    A study of spatial data models and their application to selecting information from pictorial databases

    Get PDF
    People have always used visual techniques to locate information in the space surrounding them. However with the advent of powerful computer systems and user-friendly interfaces it has become possible to extend such techniques to stored pictorial information. Pictorial database systems have in the past primarily used mathematical or textual search techniques to locate specific pictures contained within such databases. However these techniques have largely relied upon complex combinations of numeric and textual queries in order to find the required pictures. Such techniques restrict users of pictorial databases to expressing what is in essence a visual query in a numeric or character based form. What is required is the ability to express such queries in a form that more closely matches the user's visual memory or perception of the picture required. It is suggested in this thesis that spatial techniques of search are important and that two of the most important attributes of a picture are the spatial positions and the spatial relationships of objects contained within such pictures. It is further suggested that a database management system which allows users to indicate the nature of their query by visually placing iconic representations of objects on an interface in spatially appropriate positions, is a feasible method by which pictures might be found from a pictorial database. This thesis undertakes a detailed study of spatial techniques using a combination of historical evidence, psychological conclusions and practical examples to demonstrate that the spatial metaphor is an important concept and that pictures can be readily found by visually specifying the spatial positions and relationships between objects contained within them

    Visual scene recognition with biologically relevant generative models

    No full text
    This research focuses on developing visual object categorization methodologies that are based on machine learning techniques and biologically inspired generative models of visual scene recognition. Modelling the statistical variability in visual patterns, in the space of features extracted from them by an appropriate low level signal processing technique, is an important matter of investigation for both humans and machines. To study this problem, we have examined in detail two recent probabilistic models of vision: a simple multivariate Gaussian model as suggested by (Karklin & Lewicki, 2009) and a restricted Boltzmann machine (RBM) proposed by (Hinton, 2002). Both the models have been widely used for visual object classification and scene analysis tasks before. This research highlights that these models on their own are not plausible enough to perform the classification task, and suggests Fisher kernel as a means of inducing discrimination into these models for classification power. Our empirical results on standard benchmark data sets reveal that the classification performance of these generative models could be significantly boosted near to the state of the art performance, by drawing a Fisher kernel from compact generative models that computes the data labels in a fraction of total computation time. We compare the proposed technique with other distance based and kernel based classifiers to show how computationally efficient the Fisher kernels are. To the best of our knowledge, Fisher kernel has not been drawn from the RBM before, so the work presented in the thesis is novel in terms of its idea and application to vision problem
    corecore