16,388 research outputs found

    Utilising semantic technologies for decision support in dementia care

    Get PDF
    The main objective of this work is to discuss our experience in utilising semantic technologies for building decision support in Dementia care systems that are based on the non-intrusive on the non-intrusive monitoring of the patient’s behaviour. Our approach adopts context-aware modelling of the patient’s condition to facilitate the analysis of the patient’s behaviour within the inhabited environment (movement and room occupancy patterns, use of equipment, etc.) with reference to the semantic knowledge about the patient’s condition (history of present of illness, dependable behaviour patterns, etc.). The reported work especially focuses on the critical role of the semantic reasoning engine in inferring medical advice, and by means of practical experimentation and critical analysis suggests important findings related to the methodology of deploying the appropriate semantic rules systems, and the dynamics of the efficient utilisation of complex event processing technology in order to the meet the requirements of decision support for remote healthcare systems

    Semantic-based decision support for remote care of dementia patients

    Get PDF
    This paper investigates the challenges in developing a semantic-based Dementia Care Decision Support System based on the non-intrusive monitoring of the patient's behaviour. Semantic-based approaches are well suited for modelling context-aware scenarios similar to Dementia care systems, where the patient's dynamic behaviour observations (occupants movement, equipment use) need to be analysed against the semantic knowledge about the patient's condition (illness history, medical advice, known symptoms) in an integrated knowledgebase. However, our research findings establish that the ability of semantic technologies to reason upon the complex interrelated events emanating from the behaviour monitoring sensors to infer knowledge assisting medical advice represents a major challenge. We attempt to address this problem by introducing a new approach that relies on propositional calculus modelling to segregate complex events that are amenable for semantic reasoning from events that require pre-processing outside the semantic engine before they can be reasoned upon. The event pre-processing activity also controls the timing of triggering the reasoning process in order to further improve the efficiency of the inference process. Using regression analysis, we evaluate the response-time as the number of monitored patients increases and conclude that the incurred overhead on the response time of the prototype decision support systems remains tolerable

    The Profiling Potential of Computer Vision and the Challenge of Computational Empiricism

    Full text link
    Computer vision and other biometrics data science applications have commenced a new project of profiling people. Rather than using 'transaction generated information', these systems measure the 'real world' and produce an assessment of the 'world state' - in this case an assessment of some individual trait. Instead of using proxies or scores to evaluate people, they increasingly deploy a logic of revealing the truth about reality and the people within it. While these profiling knowledge claims are sometimes tentative, they increasingly suggest that only through computation can these excesses of reality be captured and understood. This article explores the bases of those claims in the systems of measurement, representation, and classification deployed in computer vision. It asks if there is something new in this type of knowledge claim, sketches an account of a new form of computational empiricism being operationalised, and questions what kind of human subject is being constructed by these technological systems and practices. Finally, the article explores legal mechanisms for contesting the emergence of computational empiricism as the dominant knowledge platform for understanding the world and the people within it

    Co-operative competition: a Foucauldian perspective

    Get PDF
    This paper considers the extent to which Michel Foucault's conception of power gives a useful explanation of power relations between firms. It examines the perceived shift in the nature of interfirm relations from the traditional model in which firms operate as autonomous units within a competitive industry, to the co-operative competition model whereby firms engage in co-operation at certain levels of their operations and compete at other levels. It argues that the concepts of power and competition are closely intertwined and that an understanding of how power operates can give a greater understanding of the nature of competition within an industry. However the issue of power relations in the presence of co-operative competition has not been adequately explored by the literature. An analysis of the type of power reflected in interfirm relations is held as being the key to understanding the simultaneous existence of co-operation and competition between firms

    Interoperable services based on activity monitoring in ambient assisted living environments

    Get PDF
    Ambient Assisted Living (AAL) is considered as the main technological solution that will enable the aged and people in recovery to maintain their independence and a consequent high quality of life for a longer period of time than would otherwise be the case. This goal is achieved by monitoring human’s activities and deploying the appropriate collection of services to set environmental features and satisfy user preferences in a given context. However, both human monitoring and services deployment are particularly hard to accomplish due to the uncertainty and ambiguity characterising human actions, and heterogeneity of hardware devices composed in an AAL system. This research addresses both the aforementioned challenges by introducing 1) an innovative system, based on Self Organising Feature Map (SOFM), for automatically classifying the resting location of a moving object in an indoor environment and 2) a strategy able to generate context-aware based Fuzzy Markup Language (FML) services in order to maximize the users’ comfort and hardware interoperability level. The overall system runs on a distributed embedded platform with a specialised ceiling- mounted video sensor for intelligent activity monitoring. The system has the ability to learn resting locations, to measure overall activity levels, to detect specific events such as potential falls and to deploy the right sequence of fuzzy services modelled through FML for supporting people in that particular context. Experimental results show less than 20% classification error in monitoring human activities and providing the right set of services, showing the robustness of our approach over others in literature with minimal power consumption
    corecore