605 research outputs found

    Logical Entropy: Introduction to Classical and Quantum Logical Information theory

    Get PDF
    Logical information theory is the quantitative version of the logic of partitions just as logical probability theory is the quantitative version of the dual Boolean logic of subsets. The resulting notion of information is about distinctions, differences and distinguishability and is formalized using the distinctions of a partition. All the definitions of simple, joint, conditional and mutual entropy of Shannon information theory are derived by a uniform transformation from the corresponding definitions at the logical level. The purpose of this paper is to give the direct generalization to quantum logical information theory that similarly focuses on the pairs of eigenstates distinguished by an observable, i.e., qudits of an observable. The fundamental theorem for quantum logical entropy and measurement establishes a direct quantitative connection between the increase in quantum logical entropy due to a projective measurement and the eigenstates that are distinguished by the measurement. Both the classical and quantum versions of logical entropy have simple interpretations as “two-draw” probabilities for distinctions. The conclusion is that quantum logical entropy is the simple and natural notion of information for quantum information theory focusing on the distinguishing of quantum states

    On the lengths of divisible codes

    Get PDF
    In this article, the effective lengths of all qrq^r-divisible linear codes over Fq\mathbb{F}_q with a non-negative integer rr are determined. For that purpose, the Sq(r)S_q(r)-adic expansion of an integer nn is introduced. It is shown that there exists a qrq^r-divisible Fq\mathbb{F}_q-linear code of effective length nn if and only if the leading coefficient of the Sq(r)S_q(r)-adic expansion of nn is non-negative. Furthermore, the maximum weight of a qrq^r-divisible code of effective length nn is at most σqr\sigma q^r, where σ\sigma denotes the cross-sum of the Sq(r)S_q(r)-adic expansion of nn. This result has applications in Galois geometries. A recent theorem of N{\u{a}}stase and Sissokho on the maximum size of a partial spread follows as a corollary. Furthermore, we get an improvement of the Johnson bound for constant dimension subspace codes.Comment: 17 pages, typos corrected; the paper was originally named "An improvement of the Johnson bound for subspace codes

    Kernel discriminant analysis and clustering with parsimonious Gaussian process models

    Full text link
    This work presents a family of parsimonious Gaussian process models which allow to build, from a finite sample, a model-based classifier in an infinite dimensional space. The proposed parsimonious models are obtained by constraining the eigen-decomposition of the Gaussian processes modeling each class. This allows in particular to use non-linear mapping functions which project the observations into infinite dimensional spaces. It is also demonstrated that the building of the classifier can be directly done from the observation space through a kernel function. The proposed classification method is thus able to classify data of various types such as categorical data, functional data or networks. Furthermore, it is possible to classify mixed data by combining different kernels. The methodology is as well extended to the unsupervised classification case. Experimental results on various data sets demonstrate the effectiveness of the proposed method

    Classification and Galois conjugacy of Hamming maps

    Full text link
    We show that for each d>0 the d-dimensional Hamming graph H(d,q) has an orientably regular surface embedding if and only if q is a prime power p^e. If q>2 there are up to isomorphism \phi(q-1)/e such maps, all constructed as Cayley maps for a d-dimensional vector space over the field of order q. We show that for each such pair d, q the corresponding Belyi pairs are conjugate under the action of the absolute Galois group, and we determine their minimal field of definition. We also classify the orientably regular embedding of merged Hamming graphs for q>3
    • 

    corecore