2,896 research outputs found

    Logic Programming Applications: What Are the Abstractions and Implementations?

    Full text link
    This article presents an overview of applications of logic programming, classifying them based on the abstractions and implementations of logic languages that support the applications. The three key abstractions are join, recursion, and constraint. Their essential implementations are for-loops, fixed points, and backtracking, respectively. The corresponding kinds of applications are database queries, inductive analysis, and combinatorial search, respectively. We also discuss language extensions and programming paradigms, summarize example application problems by application areas, and touch on example systems that support variants of the abstractions with different implementations

    Survey over Existing Query and Transformation Languages

    Get PDF
    A widely acknowledged obstacle for realizing the vision of the Semantic Web is the inability of many current Semantic Web approaches to cope with data available in such diverging representation formalisms as XML, RDF, or Topic Maps. A common query language is the first step to allow transparent access to data in any of these formats. To further the understanding of the requirements and approaches proposed for query languages in the conventional as well as the Semantic Web, this report surveys a large number of query languages for accessing XML, RDF, or Topic Maps. This is the first systematic survey to consider query languages from all these areas. From the detailed survey of these query languages, a common classification scheme is derived that is useful for understanding and differentiating languages within and among all three areas

    The complexity of the list homomorphism problem for graphs

    Get PDF
    We completely classify the computational complexity of the list H-colouring problem for graphs (with possible loops) in combinatorial and algebraic terms: for every graph H the problem is either NP-complete, NL-complete, L-complete or is first-order definable; descriptive complexity equivalents are given as well via Datalog and its fragments. Our algebraic characterisations match important conjectures in the study of constraint satisfaction problems.Comment: 12 pages, STACS 201

    Combining Forward and Backward Abstract Interpretation of Horn Clauses

    Full text link
    Alternation of forward and backward analyses is a standard technique in abstract interpretation of programs, which is in particular useful when we wish to prove unreachability of some undesired program states. The current state-of-the-art technique for combining forward (bottom-up, in logic programming terms) and backward (top-down) abstract interpretation of Horn clauses is query-answer transformation. It transforms a system of Horn clauses, such that standard forward analysis can propagate constraints both forward, and backward from a goal. Query-answer transformation is effective, but has issues that we wish to address. For that, we introduce a new backward collecting semantics, which is suitable for alternating forward and backward abstract interpretation of Horn clauses. We show how the alternation can be used to prove unreachability of the goal and how every subsequent run of an analysis yields a refined model of the system. Experimentally, we observe that combining forward and backward analyses is important for analysing systems that encode questions about reachability in C programs. In particular, the combination that follows our new semantics improves the precision of our own abstract interpreter, including when compared to a forward analysis of a query-answer-transformed system.Comment: Francesco Ranzato. 24th International Static Analysis Symposium (SAS), Aug 2017, New York City, United States. Springer, Static Analysi

    A Review of integrity constraint maintenance and view updating techniques

    Get PDF
    Two interrelated problems may arise when updating a database. On one hand, when an update is applied to the database, integrity constraints may become violated. In such case, the integrity constraint maintenance approach tries to obtain additional updates to keep integrity constraints satisfied. On the other hand, when updates of derived or view facts are requested, a view updating mechanism must be applied to translate the update request into correct updates of the underlying base facts. This survey reviews the research performed on integrity constraint maintenance and view updating. It is proposed a general framework to classify and to compare methods that tackle integrity constraint maintenance and/or view updating. Then, we analyze some of these methods in more detail to identify their actual contribution and the main limitations they may present.Postprint (published version

    Formal Verification of Security Protocol Implementations: A Survey

    Get PDF
    Automated formal verification of security protocols has been mostly focused on analyzing high-level abstract models which, however, are significantly different from real protocol implementations written in programming languages. Recently, some researchers have started investigating techniques that bring automated formal proofs closer to real implementations. This paper surveys these attempts, focusing on approaches that target the application code that implements protocol logic, rather than the libraries that implement cryptography. According to these approaches, libraries are assumed to correctly implement some models. The aim is to derive formal proofs that, under this assumption, give assurance about the application code that implements the protocol logic. The two main approaches of model extraction and code generation are presented, along with the main techniques adopted for each approac
    • …
    corecore