336 research outputs found

    Diagnosis of Parkinson’s Disease using Fuzzy C-Means Clustering and Pattern Recognition

    Get PDF
    Parkinson’s disease (PD) is a global public health problem of enormous dimension. In this study, we aimed to discriminate between healthy people and people with Parkinson’s disease (PD). Various studies revealed, that voice is one of the earliest indicator of PD, and for that reason, Parkinson dataset that contains biomedical voice of human is used. The main goal of this paper is to automatically detect whether the speech/voice of a person is affected by PD. We examined the performance of fuzzy c-means (FCM) clustering and pattern recognition methods on Parkinson’s disease dataset. The first method has the main aim to distinguish performance between two classes, when trying to differentiate between normal speaking persons and speakers with PD. This method could greatly be improved by classifying data first and then testing new data using these two patterns. Thus, second method used here is pattern recognition. The experimental results have demonstrated that the combination of the fuzzy c-means method and pattern recognition obtained promising results for the classification of PD

    Early Detection of Parkinson Disease using Voice Data

    Get PDF
    Parkinson’s disease affects over 10 million people worldwide, with approximately 20 percent of patients not being diagnosed. Clinical diagnosis is expensive because there are no specific tests or bio-markers, and it can take days to diagnose because it is based on a comprehensive evaluation of the individual’s symptoms. Existing research either predicts a Unified Parkinson Disease Rating Scale rating, uses other key Parkinsonian features to diagnose an individual, such as tapping, gait, and tremor, or focuses on different audio features. In this paper, we are focusing on using the voice aspect for the early detection of the disease. We use the University of California Irvine (UCI) Parkinson data set. This data set contains various parameters regarding voice jitter. The data set first undergoes preprocessing. We have used a Feedforward Neural Network (FNN) model to acquire early on detection using the above data set. Our model has achieved an efficiency of 97.43 percent. This efficiency can be improved by using even a larger and diverse data set

    Diagnosis of Parkinson’s Disease using Principal Component Analysis and Boosting Committee Machines

    Get PDF
    Parkinson’s disease (PD) has become one of the most common degenerative disorders of the central nervous system. In this study, our main goal was to discriminate between healthy people and people with Parkinson’s disease. In order to achieve this we used artificial neural networks, and dataset taken from University of California, Irvine machine learning database, having 48 normal and 147 PD cases. We examine the performance of neural network systems with back propagation together with a majority voting scheme. In order to train examples we used boosting by filtering technique with seven committee machines, and principal component analysis is used for data reduction. The experimental results have demonstrated that the combination of these proposed methods has obtained very good results with correct positive value of 92% on the classification of PD.

    KLASYFIKACJA CHOROBY PARKINSONA I INNYCH ZABURZEŃ NEUROLOGICZNYCH Z WYKORZYSTANIEM EKSTRAKCJI CECH GŁOSOWYCH I TECHNIK REDUKCJI

    Get PDF
    This study aimed to differentiate individuals with Parkinson's disease (PD) from those with other neurological disorders (ND) by analyzing voice samples, considering the association between voice disorders and PD. Voice samples were collected from 76 participants using different recording devices and conditions, with participants instructed to sustain the vowel /a/ comfortably. PRAAT software was employed to extract features including autocorrelation (AC), cross-correlation (CC), and Mel frequency cepstral coefficients (MFCC) from the voice samples. Principal component analysis (PCA) was utilized to reduce the dimensionality of the features. Classification Tree (CT), Logistic Regression, Naive Bayes (NB), Support Vector Machines (SVM), and Ensemble methods were employed as supervised machine learning techniques for classification. Each method provided distinct strengths and characteristics, facilitating a comprehensive evaluation of their effectiveness in distinguishing PD patients from individuals with other neurological disorders. The Naive Bayes kernel, using seven PCA-derived components, achieved the highest accuracy rate of 86.84% among the tested classification methods. It is worth noting that classifier performance may vary based on the dataset and specific characteristics of the voice samples. In conclusion, this study demonstrated the potential of voice analysis as a diagnostic tool for distinguishing PD patients from individuals with other neurological disorders. By employing a variety of voice analysis techniques and utilizing different machine learning algorithms, including Classification Tree, Logistic Regression, Naive Bayes, Support Vector Machines, and Ensemble methods, a notable accuracy rate was attained. However, further research and validation using larger datasets are required to consolidate and generalize these findings for future clinical applications.Przedstawione badanie miało na celu różnicowanie osób z chorobą Parkinsona (PD) od osób z innymi zaburzeniami neurologicznymi poprzez analizę próbek głosowych, biorąc pod uwagę związek między zaburzeniami głosu a PD. Próbki głosowe zostały zebrane od 76 uczestników przy użyciu różnych urządzeń i warunków nagrywania, a uczestnicy byli instruowani, aby wydłużyć samogłoskę /a/ w wygodnym tempie. Oprogramowanie PRAAT zostało zastosowane do ekstrakcji cech, takich jak autokorelacja (AC), krzyżowa korelacja (CC) i współczynniki cepstralne Mel (MFCC) z próbek głosowych. Analiza składowych głównych (PCA) została wykorzystana w celu zmniejszenia wymiarowości cech. Jako techniki nadzorowanego uczenia maszynowego wykorzystano drzewa decyzyjne (CT), regresję logistyczną, naiwny klasyfikator Bayesa (NB), maszyny wektorów nośnych (SVM) oraz metody zespołowe. Każda z tych metod posiadała swoje unikalne mocne strony i charakterystyki, umożliwiając kompleksową ocenę ich skuteczności w rozróżnianiu pacjentów z PD od osób z innymi zaburzeniami neurologicznymi. Naiwny klasyfikator Bayesa, wykorzystujący siedem składowych PCA, osiągnął najwyższy wskaźnik dokładności na poziomie 86,84% wśród przetestowanych metod klasyfikacji. Należy jednak zauważyć, że wydajność klasyfikatora może się różnić w zależności od zbioru danych i konkretnych cech próbek głosowych. Podsumowując, to badanie wykazało potencjał analizy głosu jako narzędzia diagnostycznego do rozróżniania pacjentów z PD od osób z innymi zaburzeniami neurologicznymi. Poprzez zastosowanie różnych technik analizy głosu i wykorzystanie różnych algorytmów uczenia maszynowego, takich jak drzewa decyzyjne, regresja logistyczna, naiwny klasyfikator Bayesa, maszyny wektorów nośnych i metody zespołowe, osiągnięto znaczący poziom dokładności. Niemniej jednak, konieczne są dalsze badania i walidacja na większych zbiorach danych w celu skonsolidowania i uogólnienia tych wyników dla przyszłych zastosowań klinicznych

    Computational Language Assessment in patients with speech, language, and communication impairments

    Full text link
    Speech, language, and communication symptoms enable the early detection, diagnosis, treatment planning, and monitoring of neurocognitive disease progression. Nevertheless, traditional manual neurologic assessment, the speech and language evaluation standard, is time-consuming and resource-intensive for clinicians. We argue that Computational Language Assessment (C.L.A.) is an improvement over conventional manual neurological assessment. Using machine learning, natural language processing, and signal processing, C.L.A. provides a neuro-cognitive evaluation of speech, language, and communication in elderly and high-risk individuals for dementia. ii. facilitates the diagnosis, prognosis, and therapy efficacy in at-risk and language-impaired populations; and iii. allows easier extensibility to assess patients from a wide range of languages. Also, C.L.A. employs Artificial Intelligence models to inform theory on the relationship between language symptoms and their neural bases. It significantly advances our ability to optimize the prevention and treatment of elderly individuals with communication disorders, allowing them to age gracefully with social engagement.Comment: 36 pages, 2 figures, to be submite

    Voice pathologies : the most comum features and classification tools

    Get PDF
    Speech pathologies are quite common in society, however the exams that exist are invasive, making them uncomfortable for patients and depending on the experience of the clinician who performs the assessment. Hence the need to develop non-invasive methods, which allow objective and efficient analysis. Taking this need into account in this work, the most promising list of features and classifiers was identified. As features, jitter, shimmer, HNR, LPC, PLP, and MFCC were identified and as classifiers CNN, RNN and LSTM. This study intends to develop a device to support medical decision, however this article already presents the system interface.info:eu-repo/semantics/publishedVersio

    Improved Algorithm for Pathological and Normal Voices Identification

    Get PDF
    There are a lot of papers on automatic classification between normal and pathological voices, but they have the lack in the degree of severity estimation of the identified voice disorders. Building a model of pathological and normal voices identification, that can also evaluate the degree of severity of the identified voice disorders among students. In the present work, we present an automatic classifier using acoustical measurements on registered sustained vowels /a/ and pattern recognition tools based on neural networks. The training set was done by classifying students’ recorded voices based on threshold from the literature. We retrieve the pitch, jitter, shimmer and harmonic-to-noise ratio values of the speech utterance /a/, which constitute the input vector of the neural network. The degree of severity is estimated to evaluate how the parameters are far from the standard values based on the percent of normal and pathological values. In this work, the base data used for testing the proposed algorithm of the neural network is formed by healthy and pathological voices from German database of voice disorders. The performance of the proposed algorithm is evaluated in a term of the accuracy (97.9%), sensitivity (1.6%), and specificity (95.1%). The classification rate is 90% for normal class and 95% for pathological class

    CNN AND LSTM FOR THE CLASSIFICATION OF PARKINSON'S DISEASE BASED ON THE GTCC AND MFCC

    Get PDF
    Parkinson's disease is a recognizable clinical syndrome with a variety of causes and clinical presentations; it represents a rapidly growing neurodegenerative disorder. Since about 90 percent of Parkinson's disease sufferers have some form of early speech impairment, recent studies on tele diagnosis of Parkinson's disease have focused on the recognition of voice impairments from vowel phonations or the subjects' discourse. In this paper, we present a new approach for Parkinson's disease detection from speech sounds that are based on CNN and LSTM and uses two categories of characteristics Mel Frequency Cepstral Coefficients (MFCC) and Gammatone Cepstral Coefficients (GTCC) obtained from noise-removed speech signals with comparative EMD-DWT and DWT-EMD analysis. The proposed model is divided into three stages. In the first step, noise is removed from the signals using the EMD-DWT and DWT-EMD methods. In the second step, the GTCC and MFCC are extracted from the enhanced audio signals. The classification process is carried out in the third step by feeding these features into the LSTM and CNN models, which are designed to define sequential information from the extracted features. The experiments are performed using PC-GITA and Sakar datasets and 10-fold cross validation method, the highest classification accuracy for the Sakar dataset reached 100% for both EMD-DWT-GTCC-CNN and DWT-EMD-GTCC-CNN, and for the PC-GITA dataset, the accuracy is reached 100% for EMD-DWT-GTCC-CNN and 96.55% for DWT-EMD-GTCC-CNN. The results of this study indicate that the characteristics of GTCC are more appropriate and accurate for the assessment of PD than MFCC

    CLASSIFICATION OF PARKINSON’S DISEASE AND OTHER NEUROLOGICAL DISORDERS USING VOICE FEATURES EXTRACTION AND REDUCTION TECHNIQUES

    Get PDF
    This study aimed to differentiate individuals with Parkinson's disease (PD) from those with other neurological disorders (ND) by analyzing voice samples, considering the association between voice disorders and PD. Voice samples were collected from 76 participants using different recording devices and conditions, with participants instructed to sustain the vowel /a/ comfortably. PRAAT software was employed to extract features including autocorrelation (AC), cross-correlation (CC), and Mel frequency cepstral coefficients (MFCC) from the voice samples. Principal component analysis (PCA) was utilized to reduce the dimensionality of the features. Classification Tree (CT), Logistic Regression, Naive Bayes (NB), Support Vector Machines (SVM), and Ensemble methods were employed as supervised machine learning techniques for classification. Each method provided distinct strengths and characteristics, facilitating a comprehensive evaluation of their effectiveness in distinguishing PD patients from individuals with other neurological disorders. The Naive Bayes kernel, using seven PCA-derived components, achieved the highest accuracy rate of 86.84% among the tested classification methods. It is worth noting that classifier performance may vary based on the dataset and specific characteristics of the voice samples. In conclusion, this study demonstrated the potential of voice analysis as a diagnostic tool for distinguishing PD patients from individuals with other neurological disorders. By employing a variety of voice analysis techniques and utilizing different machine learning algorithms, including Classification Tree, Logistic Regression, Naive Bayes, Support Vector Machines, and Ensemble methods, a notable accuracy rate was attained. However, further research and validation using larger datasets are required to consolidate and generalize these findings for future clinical applications

    Automatic detection of speech disorder in dysarthria using extended speech feature extraction and neural networks classification

    Get PDF
    This paper presents an automatic detection of Dysarthria, a motor speech disorder, using extended speech features called Centroid Formants. Centroid Formants are the weighted averages of the formants extracted from a speech signal. This involves extraction of the first four formants of a speech signal and averaging their weighted values. The weights are determined by the peak energies of the bands of frequency resonance, formants. The resulting weighted averages are called the Centroid Formants. In our proposed methodology, these centroid formants are used to automatically detect Dysarthric speech using neural network classification technique. The experimental results recorded after testing this algorithm are presented. The experimental data consists of 200 speech samples from 10 Dysarthric Speakers and 200 speech samples from 10 age-matched healthy speakers. The experimental results show a high performance using neural networks classification. A possible future research related to this work is the use of these extended features in speaker identification and recognition of disordered speech
    corecore