1,859 research outputs found

    Advanced metering infrastructures:security risks and mitigation

    Get PDF

    An Effective Dual Level Flow Optimized AlexNet-BiGRU Model for Intrusion Detection in Cloud Computing

    Get PDF
    In recent years, several existing techniques have been developed to solve security issues in cloud systems. The proposed study intends to develop an effective deep-learning mechanism for detecting network intrusions. The proposed study involves three stages pre-processing, feature selection and classification. Initially, the available noises in the input data are eliminated by pre-processing via data cleaning, discretization and normalization. The large feature dimensionality of pre-processed data is reduced by selecting optimal features using the wild horse optimization-based feature selection (WHO-FS) model. The selected features are then input into a proposed dual-level flow optimized AlexNet-BiGRU detection model (DLFAB-IDS). Whereas the flow direction algorithm (FDA) approach optimally tunes the hyperparameters and helps to enhance the classification performance. In the proposed model, the intrusions are detected by AlexNet and the multiclass classification is performed through the BiGRU method. The proposed study used the NSL-KDD dataset, and the simulation was done by Python tool. The efficacy of a proposed model is measured by evaluating several performance metrics. The comparison over other existing techniques shows that the proposed model brings higher performance in terms of accuracy 96.81%, recall 95.84%, precision 96.24%, f1-score 96.75%, prediction time 0.43s and training time 152.84s

    Boosting precision crop protection towards agriculture 5.0 via machine learning and emerging technologies: A contextual review

    Get PDF
    Crop protection is a key activity for the sustainability and feasibility of agriculture in a current context of climate change, which is causing the destabilization of agricultural practices and an increase in the incidence of current or invasive pests, and a growing world population that requires guaranteeing the food supply chain and ensuring food security. In view of these events, this article provides a contextual review in six sections on the role of artificial intelligence (AI), machine learning (ML) and other emerging technologies to solve current and future challenges of crop protection. Over time, crop protection has progressed from a primitive agriculture 1.0 (Ag1.0) through various technological developments to reach a level of maturity closelyin line with Ag5.0 (section 1), which is characterized by successfully leveraging ML capacity and modern agricultural devices and machines that perceive, analyze and actuate following the main stages of precision crop protection (section 2). Section 3 presents a taxonomy of ML algorithms that support the development and implementation of precision crop protection, while section 4 analyses the scientific impact of ML on the basis of an extensive bibliometric study of >120 algorithms, outlining the most widely used ML and deep learning (DL) techniques currently applied in relevant case studies on the detection and control of crop diseases, weeds and plagues. Section 5 describes 39 emerging technologies in the fields of smart sensors and other advanced hardware devices, telecommunications, proximal and remote sensing, and AI-based robotics that will foreseeably lead the next generation of perception-based, decision-making and actuation systems for digitized, smart and real-time crop protection in a realistic Ag5.0. Finally, section 6 highlights the main conclusions and final remarks

    Cloud Computing for Effective Cyber Security Attack Detection in Smart Cities

    Get PDF
    An astute metropolis is an urbanized region that accumulates data through diverse numerical and experiential understanding. Cloud-connected Internet of Things (IoT) solutions have the potential to aid intelligent cities in collecting data from inhabitants, devices, residences, and alternative origins. The monitoring and administration of carrying systems, plug-in services, reserve managing, H2O resource schemes, excess managing, illegal finding, safety actions, ability, numeral collection, healthcare abilities, and extra openings all make use of the processing and analysis of this data. This study aims to improve the security of smart cities by detecting attacks using algorithms drawn from the UNSW-NB15 and CICIDS2017 datasets and to create advanced strategies for identifying and justifying cyber threats in the context of smart cities by leveraging real-world network traffic data from UNSW-NB15 and labelled attack actions from CICIDS2017. The research aims to underwrite the development of more effective intrusion detection systems tailored to the unique problems of safeguarding networked urban environments, hence improving the flexibility and safety of smart cities by estimating these datasets

    Shielding against Web Application Attacks - Detection Techniques and Classification

    Get PDF
    The field of IoT web applications is facing a range of security risks and system attacks due to the increasing complexity and size of home automation datasets. One of the primary concerns is the identification of Distributed Denial of Service (DDoS) attacks in home automation systems. Attackers can easily access various IoT web application assets by entering a home automation dataset or clicking a link, making them vulnerable to different types of web attacks. To address these challenges, the cloud has introduced the Edge of Things paradigm, which uses multiple concurrent deep models to enhance system stability and enable easy data revelation updates. Therefore, identifying malicious attacks is crucial for improving the reliability and security of IoT web applications. This paper uses a Machine Learning algorithm that can accurately identify web attacks using unique keywords. Smart home devices are classified into four classes based on their traffic predictability levels, and a neural system recognition model is proposed to classify these attacks with a high degree of accuracy, outperforming other classification models. The application of deep learning in identifying and classifying attacks has significant theoretical and scientific value for web security investigations. It also provides innovative ideas for intelligent security detection by classifying web visitors, making it possible to identify and prevent potential security threats

    Graceful Degradation in IoT Security

    Get PDF
    As the consumer grade IoT devices industry advances, personal privacy is constantly eroded for the sake of convenience. Current security solutions, although available, ignore convenience by requiring the purchase of additional hardware, implementing confusing, out of scope updates for a non-technical user, or quarantining a device, rendering it useless. This paper proposes a solution that simultaneously maintains convenience and privacy, tailored for the Internet of Things. We propose a novel graceful degradation technique which targets individual device functionalities for acceptance or denial at the network level. When combined with current anomaly detection and fingerprinting methods, graceful degradation provides a personalized IoT security solution for the modern user
    • …
    corecore