22,133 research outputs found

    Classifying continuous, real-time e-nose sensor data using a bio-inspired spiking network modelled on the insect olfactory system

    Get PDF
    In many application domains, conventional e-noses are frequently outperformed in both speed and accuracy by their biological counterparts. Exploring potential bio-inspired improvements, we note a number of neuronal network models have demonstrated some success in classifying static datasets by abstracting the insect olfactory system. However, these designs remain largely unproven in practical settings, where sensor data is real-time, continuous, potentially noisy, lacks a precise onset signal and accurate classification requires the inclusion of temporal aspects into the feature set. This investigation therefore seeks to inform and develop the potential and suitability of biomimetic classifiers for use with typical real-world sensor data. Taking a generic classifier design inspired by the inhibition and competition in the insect antennal lobe, we apply it to identifying 20 individual chemical odours from the timeseries of responses of metal oxide sensors. We show that four out of twelve available sensors and the first 30 s(10%) of the sensors’ continuous response are sufficient to deliver 92% accurate classification without access to an odour onset signal. In contrast to previous approaches, once training is complete, sensor signals can be fed continuously into the classifier without requiring discretization. We conclude that for continuous data there may be a conceptual advantage in using spiking networks, in particular where time is an essential component of computation. Classification was achieved in real time using a GPU-accelerated spiking neural network simulator developed in our group

    Microbial and metabolic succession on common building materials under high humidity conditions.

    Get PDF
    Despite considerable efforts to characterize the microbial ecology of the built environment, the metabolic mechanisms underpinning microbial colonization and successional dynamics remain unclear, particularly at high moisture conditions. Here, we applied bacterial/viral particle counting, qPCR, amplicon sequencing of the genes encoding 16S and ITS rRNA, and metabolomics to longitudinally characterize the ecological dynamics of four common building materials maintained at high humidity. We varied the natural inoculum provided to each material and wet half of the samples to simulate a potable water leak. Wetted materials had higher growth rates and lower alpha diversity compared to non-wetted materials, and wetting described the majority of the variance in bacterial, fungal, and metabolite structure. Inoculation location was weakly associated with bacterial and fungal beta diversity. Material type influenced bacterial and viral particle abundance and bacterial and metabolic (but not fungal) diversity. Metabolites indicative of microbial activity were identified, and they too differed by material

    Set Aggregation Network as a Trainable Pooling Layer

    Full text link
    Global pooling, such as max- or sum-pooling, is one of the key ingredients in deep neural networks used for processing images, texts, graphs and other types of structured data. Based on the recent DeepSets architecture proposed by Zaheer et al. (NIPS 2017), we introduce a Set Aggregation Network (SAN) as an alternative global pooling layer. In contrast to typical pooling operators, SAN allows to embed a given set of features to a vector representation of arbitrary size. We show that by adjusting the size of embedding, SAN is capable of preserving the whole information from the input. In experiments, we demonstrate that replacing global pooling layer by SAN leads to the improvement of classification accuracy. Moreover, it is less prone to overfitting and can be used as a regularizer.Comment: ICONIP 201

    DeepConv-DTI: Prediction of drug-target interactions via deep learning with convolution on protein sequences

    Full text link
    Identification of drug-target interactions (DTIs) plays a key role in drug discovery. The high cost and labor-intensive nature of in vitro and in vivo experiments have highlighted the importance of in silico-based DTI prediction approaches. In several computational models, conventional protein descriptors are shown to be not informative enough to predict accurate DTIs. Thus, in this study, we employ a convolutional neural network (CNN) on raw protein sequences to capture local residue patterns participating in DTIs. With CNN on protein sequences, our model performs better than previous protein descriptor-based models. In addition, our model performs better than the previous deep learning model for massive prediction of DTIs. By examining the pooled convolution results, we found that our model can detect binding sites of proteins for DTIs. In conclusion, our prediction model for detecting local residue patterns of target proteins successfully enriches the protein features of a raw protein sequence, yielding better prediction results than previous approaches.Comment: 26 pages, 7 figure

    Visual and computational analysis of structure-activity relationships in high-throughput screening data

    Get PDF
    Novel analytic methods are required to assimilate the large volumes of structural and bioassay data generated by combinatorial chemistry and high-throughput screening programmes in the pharmaceutical and agrochemical industries. This paper reviews recent work in visualisation and data mining that can be used to develop structure-activity relationships from such chemical/biological datasets

    Dynamic load balancing for the distributed mining of molecular structures

    Get PDF
    In molecular biology, it is often desirable to find common properties in large numbers of drug candidates. One family of methods stems from the data mining community, where algorithms to find frequent graphs have received increasing attention over the past years. However, the computational complexity of the underlying problem and the large amount of data to be explored essentially render sequential algorithms useless. In this paper, we present a distributed approach to the frequent subgraph mining problem to discover interesting patterns in molecular compounds. This problem is characterized by a highly irregular search tree, whereby no reliable workload prediction is available. We describe the three main aspects of the proposed distributed algorithm, namely, a dynamic partitioning of the search space, a distribution process based on a peer-to-peer communication framework, and a novel receiverinitiated load balancing algorithm. The effectiveness of the distributed method has been evaluated on the well-known National Cancer Institute’s HIV-screening data set, where we were able to show close-to linear speedup in a network of workstations. The proposed approach also allows for dynamic resource aggregation in a non dedicated computational environment. These features make it suitable for large-scale, multi-domain, heterogeneous environments, such as computational grids
    • …
    corecore