959 research outputs found

    Extreme multi-label deep neural classification of Spanish health records according to the International Classification of Diseases

    Get PDF
    111 p.Este trabajo trata sobre la minería de textos clínicos, un campo del Procesamiento del Lenguaje Natural aplicado al dominio biomédico. El objetivo es automatizar la tarea de codificación médica. Los registros electrónicos de salud (EHR) son documentos que contienen información clínica sobre la salud de unpaciente. Los diagnósticos y procedimientos médicos plasmados en la Historia Clínica Electrónica están codificados con respecto a la Clasificación Internacional de Enfermedades (CIE). De hecho, la CIE es la base para identificar estadísticas de salud internacionales y el estándar para informar enfermedades y condiciones de salud. Desde la perspectiva del aprendizaje automático, el objetivo es resolver un problema extremo de clasificación de texto de múltiples etiquetas, ya que a cada registro de salud se le asignan múltiples códigos ICD de un conjunto de más de 70 000 términos de diagnóstico. Una cantidad importante de recursos se dedican a la codificación médica, una laboriosa tarea que actualmente se realiza de forma manual. Los EHR son narraciones extensas, y los codificadores médicos revisan los registros escritos por los médicos y asignan los códigos ICD correspondientes. Los textos son técnicos ya que los médicos emplean una jerga médica especializada, aunque rica en abreviaturas, acrónimos y errores ortográficos, ya que los médicos documentan los registros mientras realizan la práctica clínica real. Paraabordar la clasificación automática de registros de salud, investigamos y desarrollamos un conjunto de técnicas de clasificación de texto de aprendizaje profundo

    A Short Review of Ethical Challenges in Clinical Natural Language Processing

    Full text link
    Clinical NLP has an immense potential in contributing to how clinical practice will be revolutionized by the advent of large scale processing of clinical records. However, this potential has remained largely untapped due to slow progress primarily caused by strict data access policies for researchers. In this paper, we discuss the concern for privacy and the measures it entails. We also suggest sources of less sensitive data. Finally, we draw attention to biases that can compromise the validity of empirical research and lead to socially harmful applications.Comment: First Workshop on Ethics in Natural Language Processing (EACL'17

    Doctor of Philosophy

    Get PDF
    dissertationWith the growing national dissemination of the electronic health record (EHR), there are expectations that the public will benefit from biomedical research and discovery enabled by electronic health data. Clinical data are needed for many diseases and conditions to meet the demands of rapidly advancing genomic and proteomic research. Many biomedical research advancements require rapid access to clinical data as well as broad population coverage. A fundamental issue in the secondary use of clinical data for scientific research is the identification of study cohorts of individuals with a disease or medical condition of interest. The problem addressed in this work is the need for generalized, efficient methods to identify cohorts in the EHR for use in biomedical research. To approach this problem, an associative classification framework was designed with the goal of accurate and rapid identification of cases for biomedical research: (1) a set of exemplars for a given medical condition are presented to the framework, (2) a predictive rule set comprised of EHR attributes is generated by the framework, and (3) the rule set is applied to the EHR to identify additional patients that may have the specified condition. iv Based on this functionality, the approach was termed the ‘cohort amplification' framework. The development and evaluation of the cohort amplification framework are the subject of this dissertation. An overview of the framework design is presented. Improvements to some standard associative classification methods are described and validated. A qualitative evaluation of predictive rules to identify diabetes cases and a study of the accuracy of identification of asthma cases in the EHR using frameworkgenerated prediction rules are reported. The framework demonstrated accurate and reliable rules to identify diabetes and asthma cases in the EHR and contributed to methods for identification of biomedical research cohorts

    Analysis of medical opinions about the nonrealization of autopsies in a Mexican hospital using association rules and bayesian networks

    Get PDF
    This research identifies the factors influencing the reduction of autopsies in a hospital of Veracruz. The study is based on the application of data mining techniques such as association rules and Bayesian networks in data sets obtained from opinions of physicians. We analyzed, for the exploration and extraction of the knowledge, algorithms like Apriori, FPGrowth, PredictiveApriori, Tertius, J48, NaiveBayes, MultilayerPerceptron, and BayesNet, all of them provided by the API of WEKA. To generate mining models and present the new knowledge in natural language, we also developed a web application. The results presented in this study are those obtained from the best-evaluated algorithms, which have been validated by specialists in the field of patholog

    A comparative study of machine learning methods for verbal autopsy text classification

    Get PDF
    A Verbal Autopsy is the record of an interview about the circumstances of an uncertified death. In developing countries, if a death occurs away from health facilities, a field-worker interviews a relative of the deceased about the circumstances of the death; this Verbal Autopsy can be reviewed offsite. We report on a comparative study of the processes involved in Text Classification applied to classifying Cause of Death: feature value representation; machine learning classification algorithms; and feature reduction strategies in order to identify the suitable approaches applicable to the classification of Verbal Autopsy text. We demonstrate that normalised term frequency and the standard TFiDF achieve comparable performance across a number of classifiers. The results also show Support Vector Machine is superior to other classification algorithms employed in this research. Finally, we demonstrate the effectiveness of employing a ’locally-semisupervised’ feature reduction strategy in order to increase performance accuracy

    A Classifier to Evaluate Language Specificity in Medical Documents

    Get PDF
    Consumer health information written by health care professionals is often inaccessible to the consumers it is written for. Traditional readability formulas examine syntactic features like sentence length and number of syllables, ignoring the target audience\u27s grasp of the words themselves. The use of specialized vocabulary disrupts the understanding of patients with low reading skills, causing a decrease in comprehension. A naive Bayes classifier for three levels of increasing medical terminology specificity (consumer/patient, novice health learner, medical professional) was created with a lexicon generated from a representative medical corpus. Ninety-six percent accuracy in classification was attained. The classifier was then applied to existing consumer health web pages. We found that only 4% of pages were classified at a layperson level, regardless of the Flesch reading ease scores, while the remaining pages were at the level of medical professionals. This indicates that consumer health web pages are not using appropriate language for their target audience

    Doctor of Philosophy

    Get PDF
    dissertationMedical knowledge learned in medical school can become quickly outdated given the tremendous growth of the biomedical literature. It is the responsibility of medical practitioners to continuously update their knowledge with recent, best available clinical evidence to make informed decisions about patient care. However, clinicians often have little time to spend on reading the primary literature even within their narrow specialty. As a result, they often rely on systematic evidence reviews developed by medical experts to fulfill their information needs. At the present, systematic reviews of clinical research are manually created and updated, which is expensive, slow, and unable to keep up with the rapidly growing pace of medical literature. This dissertation research aims to enhance the traditional systematic review development process using computer-aided solutions. The first study investigates query expansion and scientific quality ranking approaches to enhance literature search on clinical guideline topics. The study showed that unsupervised methods can improve retrieval performance of a popular biomedical search engine (PubMed). The proposed methods improve the comprehensiveness of literature search and increase the ratio of finding relevant studies with reduced screening effort. The second and third studies aim to enhance the traditional manual data extraction process. The second study developed a framework to extract and classify texts from PDF reports. This study demonstrated that a rule-based multipass sieve approach is more effective than a machine-learning approach in categorizing document-level structures and iv that classifying and filtering publication metadata and semistructured texts enhances the performance of an information extraction system. The proposed method could serve as a document processing step in any text mining research on PDF documents. The third study proposed a solution for the computer-aided data extraction by recommending relevant sentences and key phrases extracted from publication reports. This study demonstrated that using a machine-learning classifier to prioritize sentences for specific data elements performs equally or better than an abstract screening approach, and might save time and reduce errors in the full-text screening process. In summary, this dissertation showed that there are promising opportunities for technology enhancement to assist in the development of systematic reviews. In this modern age when computing resources are getting cheaper and more powerful, the failure to apply computer technologies to assist and optimize the manual processes is a lost opportunity to improve the timeliness of systematic reviews. This research provides methodologies and tests hypotheses, which can serve as the basis for further large-scale software engineering projects aimed at fully realizing the prospect of computer-aided systematic reviews
    • …
    corecore