14,574 research outputs found

    Lung Nodule Classification by the Combination of Fusion Classifier and Cascaded Convolutional Neural Networks

    Full text link
    Lung nodule classification is a class imbalanced problem, as nodules are found with much lower frequency than non-nodules. In the class imbalanced problem, conventional classifiers tend to be overwhelmed by the majority class and ignore the minority class. We showed that cascaded convolutional neural networks can classify the nodule candidates precisely for a class imbalanced nodule candidate data set in our previous study. In this paper, we propose Fusion classifier in conjunction with the cascaded convolutional neural network models. To fuse the models, nodule probabilities are calculated by using the convolutional neural network models at first. Then, Fusion classifier is trained and tested by the nodule probabilities. The proposed method achieved the sensitivity of 94.4% and 95.9% at 4 and 8 false positives per scan in Free Receiver Operating Characteristics (FROC) curve analysis, respectively.Comment: Draft of ISBI2018. arXiv admin note: text overlap with arXiv:1703.0031

    Deep learning for time series classification: a review

    Get PDF
    Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-of-the-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.Comment: Accepted at Data Mining and Knowledge Discover

    Abnormality Detection in Mammography using Deep Convolutional Neural Networks

    Full text link
    Breast cancer is the most common cancer in women worldwide. The most common screening technology is mammography. To reduce the cost and workload of radiologists, we propose a computer aided detection approach for classifying and localizing calcifications and masses in mammogram images. To improve on conventional approaches, we apply deep convolutional neural networks (CNN) for automatic feature learning and classifier building. In computer-aided mammography, deep CNN classifiers cannot be trained directly on full mammogram images because of the loss of image details from resizing at input layers. Instead, our classifiers are trained on labelled image patches and then adapted to work on full mammogram images for localizing the abnormalities. State-of-the-art deep convolutional neural networks are compared on their performance of classifying the abnormalities. Experimental results indicate that VGGNet receives the best overall accuracy at 92.53\% in classifications. For localizing abnormalities, ResNet is selected for computing class activation maps because it is ready to be deployed without structural change or further training. Our approach demonstrates that deep convolutional neural network classifiers have remarkable localization capabilities despite no supervision on the location of abnormalities is provided.Comment: 6 page

    Short-segment heart sound classification using an ensemble of deep convolutional neural networks

    Get PDF
    This paper proposes a framework based on deep convolutional neural networks (CNNs) for automatic heart sound classification using short-segments of individual heart beats. We design a 1D-CNN that directly learns features from raw heart-sound signals, and a 2D-CNN that takes inputs of two- dimensional time-frequency feature maps based on Mel-frequency cepstral coefficients (MFCC). We further develop a time-frequency CNN ensemble (TF-ECNN) combining the 1D-CNN and 2D-CNN based on score-level fusion of the class probabilities. On the large PhysioNet CinC challenge 2016 database, the proposed CNN models outperformed traditional classifiers based on support vector machine and hidden Markov models with various hand-crafted time- and frequency-domain features. Best classification scores with 89.22% accuracy and 89.94% sensitivity were achieved by the ECNN, and 91.55% specificity and 88.82% modified accuracy by the 2D-CNN alone on the test set.Comment: 8 pages, 1 figure, conferenc

    Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks

    Full text link
    It is desirable to train convolutional networks (CNNs) to run more efficiently during inference. In many cases however, the computational budget that the system has for inference cannot be known beforehand during training, or the inference budget is dependent on the changing real-time resource availability. Thus, it is inadequate to train just inference-efficient CNNs, whose inference costs are not adjustable and cannot adapt to varied inference budgets. We propose a novel approach for cost-adjustable inference in CNNs - Stochastic Downsampling Point (SDPoint). During training, SDPoint applies feature map downsampling to a random point in the layer hierarchy, with a random downsampling ratio. The different stochastic downsampling configurations known as SDPoint instances (of the same model) have computational costs different from each other, while being trained to minimize the same prediction loss. Sharing network parameters across different instances provides significant regularization boost. During inference, one may handpick a SDPoint instance that best fits the inference budget. The effectiveness of SDPoint, as both a cost-adjustable inference approach and a regularizer, is validated through extensive experiments on image classification
    corecore