81 research outputs found

    Evidence combination based on credal belief redistribution for pattern classification

    Get PDF
    Evidence theory, also called belief functions theory, provides an efficient tool to represent and combine uncertain information for pattern classification. Evidence combination can be interpreted, in some applications, as classifier fusion. The sources of evidence corresponding to multiple classifiers usually exhibit different classification qualities, and they are often discounted using different weights before combination. In order to achieve the best possible fusion performance, a new Credal Belief Redistribution (CBR) method is proposed to revise such evidence. The rationale of CBR consists in transferring belief from one class not just to other classes but also to the associated disjunctions of classes (i.e., meta-classes). As classification accuracy for different objects in a given classifier can also vary, the evidence is revised according to prior knowledge mined from its training neighbors. If the selected neighbors are relatively close to the evidence, a large amount of belief will be discounted for redistribution. Otherwise, only a small fraction of belief will enter the redistribution procedure. An imprecision matrix estimated based on these neighbors is employed to specifically redistribute the discounted beliefs. This matrix expresses the likelihood of misclassification (i.e., the probability of a test pattern belonging to a class different from the one assigned to it by the classifier). In CBR, the discounted beliefs are divided into two parts. One part is transferred between singleton classes, whereas the other is cautiously committed to the associated meta-classes. By doing this, one can efficiently reduce the chance of misclassification by modeling partial imprecision. The multiple revised pieces of evidence are finally combined by Dempster-Shafer rule to reduce uncertainty and further improve classification accuracy. The effectiveness of CBR is extensively validated on several real datasets from the UCI repository, and critically compared with that of other related fusion methods

    Augmenting Deep Learning Performance in an Evidential Multiple Classifier System

    Get PDF
    International audienceThe main objective of this work is to study the applicability of ensemble methods in the context of deep learning with limited amounts of labeled data. We exploit an ensemble of neural networks derived using Monte Carlo dropout, along with an ensemble of SVM classifiers which owes its effectiveness to the hand-crafted features used as inputs and to an active learning procedure. In order to leverage each classifier's respective strengths, we combine them in an evidential framework, which models specifically their imprecision and uncertainty. The application we consider in order to illustrate the interest of our Multiple Classifier System is pedestrian detection in high-density crowds, which is ideally suited for its difficulty, cost of labeling and intrinsic imprecision of annotation data. We show that the fusion resulting from the effective modeling of uncertainty allows for performance improvement, and at the same time, for a deeper interpretation of the result in terms of commitment of the decision

    Joint prediction of observations and states in time-series based on belief functions

    No full text
    International audienceForecasting the future states of a complex system is a complicated challenge that is encountered in many industrial applications covered in the community of Prognostics and Health Management (PHM). Practically, states can be either continuous or discrete: Continuous states generally represent the value of a signal while discrete states generally depict functioning modes reflecting the current degradation. For each case, specific techniques exist. In this paper, we propose an approach based on case-based reasoning that jointly estimates the future values of the continuous signal and the future discrete modes. The main characteristics of the proposed approach are the following: 1) It relies on the K-nearest neighbours algorithm based on belief functions theory; 2) Belief functions allow the user to represent his partial knowledge concerning the possible states in the training dataset, in particular concerning transitions between functioning modes which are imprecisely known; 3) Two distinct strategies are proposed for states prediction and the fusion of both strategies is also considered. Two real datasets were used in order to assess the performance in estimating future break-down of a real system

    Joint Prediction of Continuous and Discrete States in Time-Series Based on Belief Functions.

    No full text
    International audienceForecasting the future states of a complex system is a complicated challenge that is encountered in many industrial applications covered in the community of Prognostics and Health Management (PHM). Practically, states can be either continuous or discrete: Continuous states generally represent the value of a signal while discrete states generally depict functioning modes reflecting the current degradation. For each case, specific techniques exist. In this paper, we propose an approach based on case-based reasoning that jointly estimates the future values of the continuous signal and the future discrete modes. The main characteristics of the proposed approach are the following: 1) It relies on the K-nearest neighbours algorithm based on belief functions theory; 2) Belief functions allow the user to represent his partial knowledge concerning the possible states in the training dataset, in particular concerning transitions between functioning modes which are imprecisely known; 3) Two distinct strategies are proposed for states prediction and the fusion of both strategies is also considered. Two real datasets were used in order to assess the performance in estimating future break-down of a real system

    Belief Scheduler based on model failure detection in the TBM framework. Application to human activity recognition.

    Get PDF
    International audienceA tool called Belief Scheduler is proposed for state sequence recognition in the Transferable Belief Model (TBM) framework. This tool makes noisy temporal belief functions smoother using a Temporal Evidential Filter (TEF). The Belief Scheduler makes belief on states smoother, separates the states (assumed to be true or false) and synchronizes them in order to infer the sequence. A criterion is also provided to assess the appropriateness between observed belief functions and a given sequence model. This criterion is based on the conflict information appearing explicitly in the TBM when combining observed belief functions with predictions. The Belief Scheduler is part of a generic architecture developed for on-line and automatic human action and activity recognition in videos of athletics taken with a moving camera. In experiments, the system is assessed on a database composed of 69 real athletics video sequences. The goal is to automatically recognize running, jumping, falling and standing-up actions as well as high jump, pole vault, triple jump and {long jump activities of an athlete. A comparison with Hidden Markov Models for video classification is also provided
    • …
    corecore