13,419 research outputs found

    A review of associative classification mining

    Get PDF
    Associative classification mining is a promising approach in data mining that utilizes the association rule discovery techniques to construct classification systems, also known as associative classifiers. In the last few years, a number of associative classification algorithms have been proposed, i.e. CPAR, CMAR, MCAR, MMAC and others. These algorithms employ several different rule discovery, rule ranking, rule pruning, rule prediction and rule evaluation methods. This paper focuses on surveying and comparing the state-of-the-art associative classification techniques with regards to the above criteria. Finally, future directions in associative classification, such as incremental learning and mining low-quality data sets, are also highlighted in this paper

    Novelty Detection in MultiClass Scenarios with Incomplete Set of Class Labels

    Full text link
    We address the problem of novelty detection in multiclass scenarios where some class labels are missing from the training set. Our method is based on the initial assignment of confidence values, which measure the affinity between a new test point and each known class. We first compare the values of the two top elements in this vector of confidence values. In the heart of our method lies the training of an ensemble of classifiers, each trained to discriminate known from novel classes based on some partition of the training data into presumed-known and presumednovel classes. Our final novelty score is derived from the output of this ensemble of classifiers. We evaluated our method on two datasets of images containing a relatively large number of classes - the Caltech-256 and Cifar-100 datasets. We compared our method to 3 alternative methods which represent commonly used approaches, including the one-class SVM, novelty based on k-NN, novelty based on maximal confidence, and the recent KNFST method. The results show a very clear and marked advantage for our method over all alternative methods, in an experimental setup where class labels are missing during training.Comment: 10 page

    Beyond the Selected Completely At Random Assumption for Learning from Positive and Unlabeled Data

    Full text link
    Most positive and unlabeled data is subject to selection biases. The labeled examples can, for example, be selected from the positive set because they are easier to obtain or more obviously positive. This paper investigates how learning can be ena BHbled in this setting. We propose and theoretically analyze an empirical-risk-based method for incorporating the labeling mechanism. Additionally, we investigate under which assumptions learning is possible when the labeling mechanism is not fully understood and propose a practical method to enable this. Our empirical analysis supports the theoretical results and shows that taking into account the possibility of a selection bias, even when the labeling mechanism is unknown, improves the trained classifiers

    Target contrastive pessimistic risk for robust domain adaptation

    Full text link
    In domain adaptation, classifiers with information from a source domain adapt to generalize to a target domain. However, an adaptive classifier can perform worse than a non-adaptive classifier due to invalid assumptions, increased sensitivity to estimation errors or model misspecification. Our goal is to develop a domain-adaptive classifier that is robust in the sense that it does not rely on restrictive assumptions on how the source and target domains relate to each other and that it does not perform worse than the non-adaptive classifier. We formulate a conservative parameter estimator that only deviates from the source classifier when a lower risk is guaranteed for all possible labellings of the given target samples. We derive the classical least-squares and discriminant analysis cases and show that these perform on par with state-of-the-art domain adaptive classifiers in sample selection bias settings, while outperforming them in more general domain adaptation settings.Comment: 35 pages, 3 figures, 6 tables, 2 algorithms, 1 theore

    Multi-Label Learning with Global and Local Label Correlation

    Full text link
    It is well-known that exploiting label correlations is important to multi-label learning. Existing approaches either assume that the label correlations are global and shared by all instances; or that the label correlations are local and shared only by a data subset. In fact, in the real-world applications, both cases may occur that some label correlations are globally applicable and some are shared only in a local group of instances. Moreover, it is also a usual case that only partial labels are observed, which makes the exploitation of the label correlations much more difficult. That is, it is hard to estimate the label correlations when many labels are absent. In this paper, we propose a new multi-label approach GLOCAL dealing with both the full-label and the missing-label cases, exploiting global and local label correlations simultaneously, through learning a latent label representation and optimizing label manifolds. The extensive experimental studies validate the effectiveness of our approach on both full-label and missing-label data

    Classifier Selection with Permutation Tests

    Full text link
    This work presents a content-based recommender system for machine learning classifier algorithms. Given a new data set, a recommendation of what classifier is likely to perform best is made based on classifier performance over similar known data sets. This similarity is measured according to a data set characterization that includes several state-of-the-art metrics taking into account physical structure, statis- tics, and information theory. A novelty with respect to prior work is the use of a robust approach based on permutation tests to directly assess whether a given learning algorithm is able to exploit the attributes in a data set to predict class labels, and compare it to the more commonly used F-score metric for evalu- ating classifier performance. To evaluate our approach, we have conducted an extensive experimentation including 8 of the main machine learning classification methods with varying configurations and 65 bi- nary data sets, leading to over 2331 experiments. Our results show that using the information from the permutation test clearly improves the quality of the recommendations.Comment: 20th International Conference of the Catalan Association for Artificial Intelligence (CCIA 2017

    Classifier selection with permutation tests

    Get PDF
    This work presents a content-based recommender system for machine learning classifier algorithms. Given a new data set, a recommendation of what classifier is likely to perform best is made based on classifier performance over similar known data sets. This similarity is measured according to a data set characterization that includes several state-of-the-art metrics taking into account physical structure, statistics, and information theory. A novelty with respect to prior work is the use of a robust approach based on permutation tests to directly assess whether a given learning algorithm is able to exploit the attributes in a data set to predict class labels, and compare it to the more commonly used F-score metric for evaluating classifier performance. To evaluate our approach, we have conducted an extensive experimentation including 8 of the main machine learning classification methods with varying configurations and 65 binary data sets, leading to over 2331 experiments. Our results show that using the information from the permutation test clearly improves the quality of the recommendations.Peer ReviewedPostprint (author's final draft

    A Comparative Study for Predicting Heart Diseases Using Data Mining Classification Methods

    Full text link
    Improving the precision of heart diseases detection has been investigated by many researchers in the literature. Such improvement induced by the overwhelming health care expenditures and erroneous diagnosis. As a result, various methodologies have been proposed to analyze the disease factors aiming to decrease the physicians practice variation and reduce medical costs and errors. In this paper, our main motivation is to develop an effective intelligent medical decision support system based on data mining techniques. In this context, five data mining classifying algorithms, with large datasets, have been utilized to assess and analyze the risk factors statistically related to heart diseases in order to compare the performance of the implemented classifiers (e.g., Na\"ive Bayes, Decision Tree, Discriminant, Random Forest, and Support Vector Machine). To underscore the practical viability of our approach, the selected classifiers have been implemented using MATLAB tool with two datasets. Results of the conducted experiments showed that all classification algorithms are predictive and can give relatively correct answer. However, the decision tree outperforms other classifiers with an accuracy rate of 99.0% followed by Random forest. That is the case because both of them have relatively same mechanism but the Random forest can build ensemble of decision tree. Although ensemble learning has been proved to produce superior results, but in our case the decision tree has outperformed its ensemble version

    BoostClean: Automated Error Detection and Repair for Machine Learning

    Full text link
    Predictive models based on machine learning can be highly sensitive to data error. Training data are often combined with a variety of different sources, each susceptible to different types of inconsistencies, and new data streams during prediction time, the model may encounter previously unseen inconsistencies. An important class of such inconsistencies is domain value violations that occur when an attribute value is outside of an allowed domain. We explore automatically detecting and repairing such violations by leveraging the often available clean test labels to determine whether a given detection and repair combination will improve model accuracy. We present BoostClean which automatically selects an ensemble of error detection and repair combinations using statistical boosting. BoostClean selects this ensemble from an extensible library that is pre-populated general detection functions, including a novel detector based on the Word2Vec deep learning model, which detects errors across a diverse set of domains. Our evaluation on a collection of 12 datasets from Kaggle, the UCI repository, real-world data analyses, and production datasets that show that Boost- Clean can increase absolute prediction accuracy by up to 9% over the best non-ensembled alternatives. Our optimizations including parallelism, materialization, and indexing techniques show a 22.2x end-to-end speedup on a 16-core machine

    Negative Link Prediction in Social Media

    Full text link
    Signed network analysis has attracted increasing attention in recent years. This is in part because research on signed network analysis suggests that negative links have added value in the analytical process. A major impediment in their effective use is that most social media sites do not enable users to specify them explicitly. In other words, a gap exists between the importance of negative links and their availability in real data sets. Therefore, it is natural to explore whether one can predict negative links automatically from the commonly available social network data. In this paper, we investigate the novel problem of negative link prediction with only positive links and content-centric interactions in social media. We make a number of important observations about negative links, and propose a principled framework NeLP, which can exploit positive links and content-centric interactions to predict negative links. Our experimental results on real-world social networks demonstrate that the proposed NeLP framework can accurately predict negative links with positive links and content-centric interactions. Our detailed experiments also illustrate the relative importance of various factors to the effectiveness of the proposed framework
    • …
    corecore