3,175 research outputs found

    SALSA: A Novel Dataset for Multimodal Group Behavior Analysis

    Get PDF
    Studying free-standing conversational groups (FCGs) in unstructured social settings (e.g., cocktail party ) is gratifying due to the wealth of information available at the group (mining social networks) and individual (recognizing native behavioral and personality traits) levels. However, analyzing social scenes involving FCGs is also highly challenging due to the difficulty in extracting behavioral cues such as target locations, their speaking activity and head/body pose due to crowdedness and presence of extreme occlusions. To this end, we propose SALSA, a novel dataset facilitating multimodal and Synergetic sociAL Scene Analysis, and make two main contributions to research on automated social interaction analysis: (1) SALSA records social interactions among 18 participants in a natural, indoor environment for over 60 minutes, under the poster presentation and cocktail party contexts presenting difficulties in the form of low-resolution images, lighting variations, numerous occlusions, reverberations and interfering sound sources; (2) To alleviate these problems we facilitate multimodal analysis by recording the social interplay using four static surveillance cameras and sociometric badges worn by each participant, comprising the microphone, accelerometer, bluetooth and infrared sensors. In addition to raw data, we also provide annotations concerning individuals' personality as well as their position, head, body orientation and F-formation information over the entire event duration. Through extensive experiments with state-of-the-art approaches, we show (a) the limitations of current methods and (b) how the recorded multiple cues synergetically aid automatic analysis of social interactions. SALSA is available at http://tev.fbk.eu/salsa.Comment: 14 pages, 11 figure

    Automatic object classification for surveillance videos.

    Get PDF
    PhDThe recent popularity of surveillance video systems, specially located in urban scenarios, demands the development of visual techniques for monitoring purposes. A primary step towards intelligent surveillance video systems consists on automatic object classification, which still remains an open research problem and the keystone for the development of more specific applications. Typically, object representation is based on the inherent visual features. However, psychological studies have demonstrated that human beings can routinely categorise objects according to their behaviour. The existing gap in the understanding between the features automatically extracted by a computer, such as appearance-based features, and the concepts unconsciously perceived by human beings but unattainable for machines, or the behaviour features, is most commonly known as semantic gap. Consequently, this thesis proposes to narrow the semantic gap and bring together machine and human understanding towards object classification. Thus, a Surveillance Media Management is proposed to automatically detect and classify objects by analysing the physical properties inherent in their appearance (machine understanding) and the behaviour patterns which require a higher level of understanding (human understanding). Finally, a probabilistic multimodal fusion algorithm bridges the gap performing an automatic classification considering both machine and human understanding. The performance of the proposed Surveillance Media Management framework has been thoroughly evaluated on outdoor surveillance datasets. The experiments conducted demonstrated that the combination of machine and human understanding substantially enhanced the object classification performance. Finally, the inclusion of human reasoning and understanding provides the essential information to bridge the semantic gap towards smart surveillance video systems

    Detecting complex events in user-generated video using concept classifiers

    Get PDF
    Automatic detection of complex events in user-generated videos (UGV) is a challenging task due to its new characteristics differing from broadcast video. In this work, we firstly summarize the new characteristics of UGV, and then explore how to utilize concept classifiers to recognize complex events in UGV content. The method starts from manually selecting a variety of relevant concepts, followed byconstructing classifiers for these concepts. Finally, complex event detectors are learned by using the concatenated probabilistic scores of these concept classifiers as features. Further, we also compare three different fusion operations of probabilistic scores, namely Maximum, Average and Minimum fusion. Experimental results suggest that our method provides promising results. It also shows that Maximum fusion tends to give better performance for most complex events
    • …
    corecore