389,114 research outputs found

    What Are We Doing to the Children?: An Essay on Juvenile (In)justice

    Get PDF
    The nonlinear conjugate gradients method is a very powerful program in the search for Bayes error optimal linear subspaces for classification problems. In this report, techniques to find linear subspaces where the classification error is minimized are surveyed. Summary statistics models of normal populations are used to form smooth, non-convex objective functions of a linear transformation that reduces the dimensionality. Objective functions that are based on the Mahalanobis or Bhattacharyya distances and that are closely related to the probability of misclassification are derived, as well as their subspace gradients. Different approaches to minimize those objective functions are investigated: Householder and Givens parameterizations as well as steepest descent and conjugate gradient methods. The methods are evaluated on experimental data with respect to convergence rate and subspace classification accuracy

    Preserving Differential Privacy in Convolutional Deep Belief Networks

    Full text link
    The remarkable development of deep learning in medicine and healthcare domain presents obvious privacy issues, when deep neural networks are built on users' personal and highly sensitive data, e.g., clinical records, user profiles, biomedical images, etc. However, only a few scientific studies on preserving privacy in deep learning have been conducted. In this paper, we focus on developing a private convolutional deep belief network (pCDBN), which essentially is a convolutional deep belief network (CDBN) under differential privacy. Our main idea of enforcing epsilon-differential privacy is to leverage the functional mechanism to perturb the energy-based objective functions of traditional CDBNs, rather than their results. One key contribution of this work is that we propose the use of Chebyshev expansion to derive the approximate polynomial representation of objective functions. Our theoretical analysis shows that we can further derive the sensitivity and error bounds of the approximate polynomial representation. As a result, preserving differential privacy in CDBNs is feasible. We applied our model in a health social network, i.e., YesiWell data, and in a handwriting digit dataset, i.e., MNIST data, for human behavior prediction, human behavior classification, and handwriting digit recognition tasks. Theoretical analysis and rigorous experimental evaluations show that the pCDBN is highly effective. It significantly outperforms existing solutions

    An application of a cocitation-analysis method to find further research possibilities on the area of scheduling problems

    Get PDF
    In this article we will give firstly a classification scheme of scheduling problems and their solving methods. The main aspects under examination are the following: machine and secondary resources, constraints, objective functions, uncertainty, mathematical models and adapted solution methods. In a second part, based on this scheme, we will examine a corpus of 60 main articles (1015 citation links were recorded in total) in scheduling literature from 1977 to 2009. The main purpose is to discover the underlying themes within the literature and to examine how they have evolved. To identify documents likely to be closely related, we are going to use the cocitation-based method of Greene et al. (2008). Our aim is to build a base of articles in order to extract the much developed research themes and find the less examined ones as well, and then try to discuss the reasons of the poorly investigation of some areas

    Elimination of All Bad Local Minima in Deep Learning

    Full text link
    In this paper, we theoretically prove that adding one special neuron per output unit eliminates all suboptimal local minima of any deep neural network, for multi-class classification, binary classification, and regression with an arbitrary loss function, under practical assumptions. At every local minimum of any deep neural network with these added neurons, the set of parameters of the original neural network (without added neurons) is guaranteed to be a global minimum of the original neural network. The effects of the added neurons are proven to automatically vanish at every local minimum. Moreover, we provide a novel theoretical characterization of a failure mode of eliminating suboptimal local minima via an additional theorem and several examples. This paper also introduces a novel proof technique based on the perturbable gradient basis (PGB) necessary condition of local minima, which provides new insight into the elimination of local minima and is applicable to analyze various models and transformations of objective functions beyond the elimination of local minima.Comment: Accepted to appear in AISTATS 202

    The complexity of approximately counting in 2-spin systems on kk-uniform bounded-degree hypergraphs

    Full text link
    One of the most important recent developments in the complexity of approximate counting is the classification of the complexity of approximating the partition functions of antiferromagnetic 2-spin systems on bounded-degree graphs. This classification is based on a beautiful connection to the so-called uniqueness phase transition from statistical physics on the infinite Δ\Delta-regular tree. Our objective is to study the impact of this classification on unweighted 2-spin models on kk-uniform hypergraphs. As has already been indicated by Yin and Zhao, the connection between the uniqueness phase transition and the complexity of approximate counting breaks down in the hypergraph setting. Nevertheless, we show that for every non-trivial symmetric kk-ary Boolean function ff there exists a degree bound Δ0\Delta_0 so that for all Δ≥Δ0\Delta \geq \Delta_0 the following problem is NP-hard: given a kk-uniform hypergraph with maximum degree at most Δ\Delta, approximate the partition function of the hypergraph 2-spin model associated with ff. It is NP-hard to approximate this partition function even within an exponential factor. By contrast, if ff is a trivial symmetric Boolean function (e.g., any function ff that is excluded from our result), then the partition function of the corresponding hypergraph 2-spin model can be computed exactly in polynomial time

    Using machine learning methods to determine a typology of patients with HIV-HCV infection to be treated with antivirals

    Get PDF
    Several European countries have established criteria for prioritising initiation of treatment in patients infected with the hepatitis C virus (HCV) by grouping patients according to clinical characteristics. Based on neural network techniques, our objective was to identify those factors for HIV/HCV co-infected patients (to which clinicians have given careful consideration before treatment uptake) that have not being included among the prioritisation criteria. This study was based on the Spanish HERACLES cohort (NCT02511496) (April-September 2015, 2940 patients) and involved application of different neural network models with different basis functions (product-unit, sigmoid unit and radial basis function neural networks) for automatic classification of patients for treatment. An evolutionary algorithm was used to determine the architecture and estimate the coefficients of the model. This machine learning methodology found that radial basis neural networks provided a very simple model in terms of the number of patient characteristics to be considered by the classifier (in this case, six), returning a good overall classification accuracy of 0.767 and a minimum sensitivity (for the classification of the minority class, untreated patients) of 0.550. Finally, the area under the ROC curve was 0.802, which proved to be exceptional. The parsimony of the model makes it especially attractive, using just eight connections. The independent variable "recent PWID" is compulsory due to its importance. The simplicity of the model means that it is possible to analyse the relationship between patient characteristics and the probability of belonging to the treated group
    • …
    corecore