173 research outputs found

    Video QoS/QoE over IEEE802.11n/ac: A Contemporary Survey

    Get PDF
    The demand for video applications over wireless networks has tremendously increased, and IEEE 802.11 standards have provided higher support for video transmission. However, providing Quality of Service (QoS) and Quality of Experience (QoE) for video over WLAN is still a challenge due to the error sensitivity of compressed video and dynamic channels. This thesis presents a contemporary survey study on video QoS/QoE over WLAN issues and solutions. The objective of the study is to provide an overview of the issues by conducting a background study on the video codecs and their features and characteristics, followed by studying QoS and QoE support in IEEE 802.11 standards. Since IEEE 802.11n is the current standard that is mostly deployed worldwide and IEEE 802.11ac is the upcoming standard, this survey study aims to investigate the most recent video QoS/QoE solutions based on these two standards. The solutions are divided into two broad categories, academic solutions, and vendor solutions. Academic solutions are mostly based on three main layers, namely Application, Media Access Control (MAC) and Physical (PHY) which are further divided into two major categories, single-layer solutions, and cross-layer solutions. Single-layer solutions are those which focus on a single layer to enhance the video transmission performance over WLAN. Cross-layer solutions involve two or more layers to provide a single QoS solution for video over WLAN. This thesis has also presented and technically analyzed QoS solutions by three popular vendors. This thesis concludes that single-layer solutions are not directly related to video QoS/QoE, and cross-layer solutions are performing better than single-layer solutions, but they are much more complicated and not easy to be implemented. Most vendors rely on their network infrastructure to provide QoS for multimedia applications. They have their techniques and mechanisms, but the concept of providing QoS/QoE for video is almost the same because they are using the same standards and rely on Wi-Fi Multimedia (WMM) to provide QoS

    Complexity management of H.264/AVC video compression.

    Get PDF
    The H. 264/AVC video coding standard offers significantly improved compression efficiency and flexibility compared to previous standards. However, the high computational complexity of H. 264/AVC is a problem for codecs running on low-power hand held devices and general purpose computers. This thesis presents new techniques to reduce, control and manage the computational complexity of an H. 264/AVC codec. A new complexity reduction algorithm for H. 264/AVC is developed. This algorithm predicts "skipped" macroblocks prior to motion estimation by estimating a Lagrange ratedistortion cost function. Complexity savings are achieved by not processing the macroblocks that are predicted as "skipped". The Lagrange multiplier is adaptively modelled as a function of the quantisation parameter and video sequence statistics. Simulation results show that this algorithm achieves significant complexity savings with a negligible loss in rate-distortion performance. The complexity reduction algorithm is further developed to achieve complexity-scalable control of the encoding process. The Lagrangian cost estimation is extended to incorporate computational complexity. A target level of complexity is maintained by using a feedback algorithm to update the Lagrange multiplier associated with complexity. Results indicate that scalable complexity control of the encoding process can be achieved whilst maintaining near optimal complexity-rate-distortion performance. A complexity management framework is proposed for maximising the perceptual quality of coded video in a real-time processing-power constrained environment. A real-time frame-level control algorithm and a per-frame complexity control algorithm are combined in order to manage the encoding process such that a high frame rate is maintained without significantly losing frame quality. Subjective evaluations show that the managed complexity approach results in higher perceptual quality compared to a reference encoder that drops frames in computationally constrained situations. These novel algorithms are likely to be useful in implementing real-time H. 264/AVC standard encoders in computationally constrained environments such as low-power mobile devices and general purpose computers

    Low-complexity face-assisted video coding

    Get PDF
    [[abstract]]This paper presents a novel face-assisted video coding scheme to enhance the visual quality of the face regions in video telephony applications. A skin-color based face detection and tracking scheme is proposed to locate the face regions in real-time. After classifying the macroblocks into the face and non-face regions, we present a dynamic distortion weighting adjustment (DDWA) scheme to drop the static non-face macroblocks, and the saved bits are used to compensate the face region by adjusting the distortion weighting of the face macroblocks. The quality of face regions will thus be enhanced. Moreover, the computation originally required for the skipped macroblocks can also be saved. The experimental results show that the proposed method can significantly improve the PSNR and the subjective quality of face regions, while the degradation introduced on the non-face areas is relatively insensitive to human perception. The proposed algorithm is fully compatible with the H.263 standard, and the low complexity feature makes it well suited to implement for real-time applications[[fileno]]2030144030041[[department]]電機工程學

    Complexity management for video encoders.

    Get PDF
    Software implementation of block-based video coding standards has been used in a wide range of applications. In many cases, such as real-time multimedia systems or power-constrained systems, the coding performance of software-only video encoders and decoders is limited by computational complexity. This thesis presents research work to develop techniques to manage computational complexity of video encoders. These techniques aim to provide significant complexity saving as well as adaptively controlling the computational complexity. This thesis first investigates experimentally the most computationally intensive functions in a video encoder. Based on the results of profile tests, several functions are selected as candidates, on which complexity reduction algorithms will be performed. These functions include discrete cosine transform and related functions as well as motion estimation. Adaptive complexity-reduction algorithms are proposed for computationally expensive functions: discrete cosine transform and motion estimation functions respectively. It is shown that these algorithms can flexibly control the computational complexity of each function with negligible loss of video quality. The inherent characteristics of coded macroblocks are investigated through experimental tests and they are categorized into "skipped" and" unskipped" macroblocks based on two parameters. An innovative algorithm is developed to reduce the computational complexity by predicting "skipped" macroblock prior to encoding and not carrying out the coding process on these macroblocks. The approaches described in this thesis can not only achieve adaptive control of the computational complexity of a video encoder, but also can manage the trade-off between complexity and distortion. These proposed algorithms are evaluated in terms of complexity reduction performance, rate-distortion performance and subjective and objective visual quality by experimental testing.The advantages and disadvantages of each algorithm are discussed

    Analyzing Voice And Video Call Service Performance Over A Local Area Network

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2010Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2010Bu çalışmada, VOIP teknolojisinden ve bu teknolojiyi kablolu ve kablosuz ortamda gerçeklemenin en önemli darboğazları anlatılacaktır. Ayrıca H.323, SIP (Session Initiation Protocol), Megaco ve MGCP gibi yaygın olarak kullanılan ses iletim protokolleri ve H.261, H.263 ve H.264 gibi görüntü iletim protokollerinden bahsedilmiştir. Ses kodek seçimi ve VOIP servis kalitesine etki eden faktörleri anlatılmaktadır. Bu tezde, ses, görüntü ve veri iletişimini aynı anda bünyesinde barındıran gerçek şebekeler simüle edilecektir. Kullanıcılara rastlantısal olarak ses, görüntü ve FTP gibi birtakım uygulamalar atanmıştır. Ayrıca önerilen kablolu şebekeye, kablosuz bir şebeke ilave edilerek sonuçlar incelenecektir. Optimal servis kalitesini sağlamak için seçilen uygun kuyruklama mekanizmaları ve kodek seçimlerini içeren senaryolar incelenecek ve OPNET ile elde edilmiş simülasyon sonuçları tartışılacaktır.In this study, we present a detailed description of the VoIP and also the most common challenges of implementing voice communication into wireline or wireless networks are discussed. Common voice protocols, such as H.323, Session Initiation Protocol (SIP), Megaco, MGCP and video protocols such as H.261, H.263, H.264 are described as well. CODEC selection and factors affecting VoIP Quality of Service are analyzed. We simulate a real network which includes both voice, video and data communication simultaneously. Workstations are randomly assigned to different applications, such as voice, video and FTP. We will also implement a wireless network to our proposed system. The scenarios including selecting appropriate queuing scheme and codec selection are presented and the simulation results with OPNET are drawn.Yüksek LisansM.Sc

    Layer-based coding, smoothing, and scheduling of low-bit-rate video for teleconferencing over tactical ATM networks

    Get PDF
    This work investigates issues related to distribution of low bit rate video within the context of a teleconferencing application deployed over a tactical ATM network. The main objective is to develop mechanisms that support transmission of low bit rate video streams as a series of scalable layers that progressively improve quality. The hierarchical nature of the layered video stream is actively exploited along the transmission path from the sender to the recipients to facilitate transmission. A new layered coder design tailored to video teleconferencing in the tactical environment is proposed. Macroblocks selected due to scene motion are layered via subband decomposition using the fast Haar transform. A generalized layering scheme groups the subbands to form an arbitrary number of layers. As a layering scheme suitable for low motion video is unsuitable for static slides, the coder adapts the layering scheme to the video content. A suboptimal rate control mechanism that reduces the kappa dimensional rate distortion problem resulting from the use of multiple quantizers tailored to each layer to a 1 dimensional problem by creating a single rate distortion curve for the coder in terms of a suboptimal set of kappa dimensional quantizer vectors is investigated. Rate control is thus simplified into a table lookup of a codebook containing the suboptimal quantizer vectors. The rate controller is ideal for real time video and limits fluctuations in the bit stream with no corresponding visible fluctuations in perceptual quality. A traffic smoother prior to network entry is developed to increase queuing and scheduler efficiency. Three levels of smoothing are studied: frame, layer, and cell interarrival. Frame level smoothing occurs via rate control at the application. Interleaving and cell interarrival smoothing are accomplished using a leaky bucket mechanism inserted prior to the adaptation layer or within the adaptation layerhttp://www.archive.org/details/layerbasedcoding00parkLieutenant Commander, United States NavyApproved for public release; distribution is unlimited

    Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures

    Get PDF
    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian–Wolf and Wyner–Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs

    A Review of Error Resilience Techniques in Video Streaming

    Get PDF
    Abstract-Delivering video data of satisfactory quality over unreliable networks -such as the internet or wireless networks -is a demanding area which has received significant attention of the research community over the past few years. Given the fact that packet loss is inevitable and therefore the presence of errors granted, the effort is directed towards limiting the effect of these errors. A number of techniques have been developed to address this issue. This paper aims to summarize the most significant approaches for: error resilience, error concealment and joint encoder-decoder error control techniques, and to provide a thorough discussion of the benefits and drawbacks of these error control methods. Furthermore, two case studies of error resilience utilization are presented, namely Ad-hoc networks and Multimedia Broadcast Multiple Services (MBMS)
    corecore