224 research outputs found

    A survey on handling computationally expensive multiobjective optimization problems with evolutionary algorithms

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Verlag via the DOI in this record.Evolutionary algorithms are widely used for solving multiobjective optimization problems but are often criticized because of a large number of function evaluations needed. Approximations, especially function approximations, also referred to as surrogates or metamodels are commonly used in the literature to reduce the computation time. This paper presents a survey of 45 different recent algorithms proposed in the literature between 2008 and 2016 to handle computationally expensive multiobjective optimization problems. Several algorithms are discussed based on what kind of an approximation such as problem, function or fitness approximation they use. Most emphasis is given to function approximation-based algorithms. We also compare these algorithms based on different criteria such as metamodeling technique and evolutionary algorithm used, type and dimensions of the problem solved, handling constraints, training time and the type of evolution control. Furthermore, we identify and discuss some promising elements and major issues among algorithms in the literature related to using an approximation and numerical settings used. In addition, we discuss selecting an algorithm to solve a given computationally expensive multiobjective optimization problem based on the dimensions in both objective and decision spaces and the computation budget available.The research of Tinkle Chugh was funded by the COMAS Doctoral Program (at the University of Jyväskylä) and FiDiPro Project DeCoMo (funded by Tekes, the Finnish Funding Agency for Innovation), and the research of Dr. Karthik Sindhya was funded by SIMPRO project funded by Tekes as well as DeCoMo

    Global and local surrogate-assisted differential evolution for expensive constrained optimization

    Get PDF
    The file attached to this record is the author's final peer reviewed version.For expensive constrained optimization problems, the computation of objective function and constraints is very time-consuming. This paper proposes a novel global and local surrogate-assisted differential evolution for solving expensive constrained optimization problems with inequality constraints. The proposed method consists of two main phases: global surrogate-assisted phase and local surrogate-assisted phase. In the global surrogate-assisted phase, differential evolution serves as the search engine to produce multiple trial vectors. Afterward, the generalized regression neural network is used to evaluate these trial vectors. In order to select the best candidate from these trial vectors, two rules are combined. The first is the feasibility rule, which at first guides the population toward the feasible region, and then toward the optimal solution. In addition, the second rule puts more emphasis on the solution with the highest predicted uncertainty, and thus alleviates the inaccuracy of the surrogates. In the local surrogate-assisted phase, the interior point method coupled with radial basis function is utilized to refine each individual in the population. During the evolution, the global surrogate-assisted phase has the capability to promptly locate the promising region and the local surrogate-assisted phase is able to speed up the convergence. Therefore, by combining these two important elements, the number of fitness evaluations can be reduced remarkably. The proposed method has been tested on numerous benchmark test functions from three test suites and two real-world cases. The experimental results demonstrate that the performance of the proposed method is better than that of other state-of-the-art methods

    Advances in Evolutionary Algorithms

    Get PDF
    With the recent trends towards massive data sets and significant computational power, combined with evolutionary algorithmic advances evolutionary computation is becoming much more relevant to practice. Aim of the book is to present recent improvements, innovative ideas and concepts in a part of a huge EA field

    An overview of population-based algorithms for multi-objective optimisation

    Get PDF
    In this work we present an overview of the most prominent population-based algorithms and the methodologies used to extend them to multiple objective problems. Although not exact in the mathematical sense, it has long been recognised that population-based multi-objective optimisation techniques for real-world applications are immensely valuable and versatile. These techniques are usually employed when exact optimisation methods are not easily applicable or simply when, due to sheer complexity, such techniques could potentially be very costly. Another advantage is that since a population of decision vectors is considered in each generation these algorithms are implicitly parallelisable and can generate an approximation of the entire Pareto front at each iteration. A critique of their capabilities is also provided

    A Review of Surrogate Assisted Multiobjective Evolutionary Algorithms

    Get PDF
    Multiobjective evolutionary algorithms have incorporated surrogate models in order to reduce the number of required evaluations to approximate the Pareto front of computationally expensive multiobjective optimization problems. Currently, few works have reviewed the state of the art in this topic. However, the existing reviews have focused on classifying the evolutionary multiobjective optimization algorithms with respect to the type of underlying surrogate model. In this paper, we center our focus on classifying multiobjective evolutionary algorithms with respect to their integration with surrogate models. This interaction has led us to classify similar approaches and identify advantages and disadvantages of each class

    A Review of Surrogate Assisted Multiobjective Evolutionary Algorithms

    Get PDF
    Multiobjective evolutionary algorithms have incorporated surrogate models in order to reduce the number of required evaluations to approximate the Pareto front of computationally expensive multiobjective optimization problems. Currently, few works have reviewed the state of the art in this topic. However, the existing reviews have focused on classifying the evolutionary multiobjective optimization algorithms with respect to the type of underlying surrogate model. In this paper, we center our focus on classifying multiobjective evolutionary algorithms with respect to their integration with surrogate models. This interaction has led us to classify similar approaches and identify advantages and disadvantages of each class
    • …
    corecore