1,788 research outputs found

    Learning Sparse Neural Networks via Sensitivity-Driven Regularization

    Full text link
    The ever-increasing number of parameters in deep neural networks poses challenges for memory-limited applications. Regularize-and-prune methods aim at meeting these challenges by sparsifying the network weights. In this context we quantify the output sensitivity to the parameters (i.e. their relevance to the network output) and introduce a regularization term that gradually lowers the absolute value of parameters with low sensitivity. Thus, a very large fraction of the parameters approach zero and are eventually set to zero by simple thresholding. Our method surpasses most of the recent techniques both in terms of sparsity and error rates. In some cases, the method reaches twice the sparsity obtained by other techniques at equal error rates

    Non-convex regularization in remote sensing

    Get PDF
    In this paper, we study the effect of different regularizers and their implications in high dimensional image classification and sparse linear unmixing. Although kernelization or sparse methods are globally accepted solutions for processing data in high dimensions, we present here a study on the impact of the form of regularization used and its parametrization. We consider regularization via traditional squared (2) and sparsity-promoting (1) norms, as well as more unconventional nonconvex regularizers (p and Log Sum Penalty). We compare their properties and advantages on several classification and linear unmixing tasks and provide advices on the choice of the best regularizer for the problem at hand. Finally, we also provide a fully functional toolbox for the community.Comment: 11 pages, 11 figure

    Shakeout: A New Approach to Regularized Deep Neural Network Training

    Full text link
    Recent years have witnessed the success of deep neural networks in dealing with a plenty of practical problems. Dropout has played an essential role in many successful deep neural networks, by inducing regularization in the model training. In this paper, we present a new regularized training approach: Shakeout. Instead of randomly discarding units as Dropout does at the training stage, Shakeout randomly chooses to enhance or reverse each unit's contribution to the next layer. This minor modification of Dropout has the statistical trait: the regularizer induced by Shakeout adaptively combines L0L_0, L1L_1 and L2L_2 regularization terms. Our classification experiments with representative deep architectures on image datasets MNIST, CIFAR-10 and ImageNet show that Shakeout deals with over-fitting effectively and outperforms Dropout. We empirically demonstrate that Shakeout leads to sparser weights under both unsupervised and supervised settings. Shakeout also leads to the grouping effect of the input units in a layer. Considering the weights in reflecting the importance of connections, Shakeout is superior to Dropout, which is valuable for the deep model compression. Moreover, we demonstrate that Shakeout can effectively reduce the instability of the training process of the deep architecture.Comment: Appears at T-PAMI 201
    • …
    corecore