51,180 research outputs found

    Machine learning approaches to supporting the identification of photoreceptor-enriched genes based on expression data

    Get PDF
    BACKGROUND: Retinal photoreceptors are highly specialised cells, which detect light and are central to mammalian vision. Many retinal diseases occur as a result of inherited dysfunction of the rod and cone photoreceptor cells. Development and maintenance of photoreceptors requires appropriate regulation of the many genes specifically or highly expressed in these cells. Over the last decades, different experimental approaches have been developed to identify photoreceptor enriched genes. Recent progress in RNA analysis technology has generated large amounts of gene expression data relevant to retinal development. This paper assesses a machine learning methodology for supporting the identification of photoreceptor enriched genes based on expression data. RESULTS: Based on the analysis of publicly-available gene expression data from the developing mouse retina generated by serial analysis of gene expression (SAGE), this paper presents a predictive methodology comprising several in silico models for detecting key complex features and relationships encoded in the data, which may be useful to distinguish genes in terms of their functional roles. In order to understand temporal patterns of photoreceptor gene expression during retinal development, a two-way cluster analysis was firstly performed. By clustering SAGE libraries, a hierarchical tree reflecting relationships between developmental stages was obtained. By clustering SAGE tags, a more comprehensive expression profile for photoreceptor cells was revealed. To demonstrate the usefulness of machine learning-based models in predicting functional associations from the SAGE data, three supervised classification models were compared. The results indicated that a relatively simple instance-based model (KStar model) performed significantly better than relatively more complex algorithms, e.g. neural networks. To deal with the problem of functional class imbalance occurring in the dataset, two data re-sampling techniques were studied. A random over-sampling method supported the implementation of the most powerful prediction models. The KStar model was also able to achieve higher predictive sensitivities and specificities using random over-sampling techniques. CONCLUSION: The approaches assessed in this paper represent an efficient and relatively inexpensive in silico methodology for supporting large-scale analysis of photoreceptor gene expression by SAGE. They may be applied as complementary methodologies to support functional predictions before implementing more comprehensive, experimental prediction and validation methods. They may also be combined with other large-scale, data-driven methods to facilitate the inference of transcriptional regulatory networks in the developing retina. Furthermore, the methodology assessed may be applied to other data domains

    Mapping Dynamic Histone Acetylation Patterns to Gene Expression in Nanog-depleted Murine Embryonic Stem Cells

    Get PDF
    Embryonic stem cells (ESC) have the potential to self-renew indefinitely and to differentiate into any of the three germ layers. The molecular mechanisms for self-renewal, maintenance of pluripotency and lineage specification are poorly understood, but recent results point to a key role for epigenetic mechanisms. In this study, we focus on quantifying the impact of histone 3 acetylation (H3K9,14ac) on gene expression in murine embryonic stem cells. We analyze genome-wide histone acetylation patterns and gene expression profiles measured over the first five days of cell differentiation triggered by silencing Nanog, a key transcription factor in ESC regulation. We explore the temporal and spatial dynamics of histone acetylation data and its correlation with gene expression using supervised and unsupervised statistical models. On a genome-wide scale, changes in acetylation are significantly correlated to changes in mRNA expression and, surprisingly, this coherence increases over time. We quantify the predictive power of histone acetylation for gene expression changes in a balanced cross-validation procedure. In an in-depth study we focus on genes central to the regulatory network of Mouse ESC, including those identified in a recent genome-wide RNAi screen and in the PluriNet, a computationally derived stem cell signature. We find that compared to the rest of the genome, ESC-specific genes show significantly more acetylation signal and a much stronger decrease in acetylation over time, which is often not reflected in an concordant expression change. These results shed light on the complexity of the relationship between histone acetylation and gene expression and are a step forward to dissect the multilayer regulatory mechanisms that determine stem cell fate.Comment: accepted at PLoS Computational Biolog

    Genome-wide gene expression analysis of anguillid herpesvirus 1

    Get PDF
    <p>Background: Whereas temporal gene expression in mammalian herpesviruses has been studied extensively, little is known about gene expression in fish herpesviruses. Here we report a genome-wide transcription analysis of a fish herpesvirus, anguillid herpesvirus 1, in cell culture, studied during the first 6 hours of infection using reverse transcription quantitative PCR.</p> <p>Results: Four immediate-early genes – open reading frames 1, 6A, 127 and 131 – were identified on the basis of expression in the presence of a protein synthesis inhibitor and unique expression profiles during infection in the absence of inhibitor. All of these genes are located within or near the terminal direct repeats. The remaining 122 open reading frames were clustered into groups on the basis of transcription profiles during infection. Expression of these genes was also studied in the presence of a viral DNA polymerase inhibitor, enabling classification into early, early-late and late genes. In general, clustering by expression profile and classification by inhibitor studies corresponded well. Most early genes encode enzymes and proteins involved in DNA replication, most late genes encode structural proteins, and early-late genes encode non-structural as well as structural proteins.</p> <p>Conclusions: Overall, anguillid herpesvirus 1 gene expression was shown to be regulated in a temporal fashion, comparable to that of mammalian herpesviruses.</p&gt

    Functional Classification of Skeletal Muscle Networks. I. Normal Physiology

    Get PDF
    Extensive measurements of the parts list of human skeletal muscle through transcriptomics and other phenotypic assays offer the opportunity to reconstruct detailed functional models. Through integration of vast amounts of data present in databases and extant knowledge of muscle function combined with robust analyses that include a clustering approach, we present both a protein parts list and network models for skeletal muscle function. The model comprises the four key functional family networks that coexist within a functional space; namely, excitation-activation family (forward pathways that transmit a motoneuronal command signal into the spatial volume of the cell and then use Ca2+ fluxes to bind Ca2+ to troponin C sites on F-actin filaments, plus transmembrane pumps that maintain transmission capacity); mechanical transmission family (a sophisticated three-dimensional mechanical apparatus that bidirectionally couples the millions of actin-myosin nanomotors with external axial tensile forces at insertion sites); metabolic and bioenergetics family (pathways that supply energy for the skeletal muscle function under widely varying demands and provide for other cellular processes); and signaling-production family (which represents various sensing, signal transduction, and nuclear infrastructure that controls the turn over and structural integrity and regulates the maintenance, regeneration, and remodeling of the muscle). Within each family, we identify subfamilies that function as a unit through analysis of large-scale transcription profiles of muscle and other tissues. This comprehensive network model provides a framework for exploring functional mechanisms of the skeletal muscle in normal and pathophysiology, as well as for quantitative modeling
    • …
    corecore