2,306 research outputs found

    Traffic monitoring using image processing : a thesis presented in partial fulfillment of the requirements for the degree of Master of Engineering in Information and Telecommunications Engineering at Massey University, Palmerston North, New Zealand

    Get PDF
    Traffic monitoring involves the collection of data describing the characteristics of vehicles and their movements. Such data may be used for automatic tolls, congestion and incident detection, law enforcement, and road capacity planning etc. With the recent advances in Computer Vision technology, videos can be analysed automatically and relevant information can be extracted for particular applications. Automatic surveillance using video cameras with image processing technique is becoming a powerful and useful technology for traffic monitoring. In this research project, a video image processing system that has the potential to be developed for real-time application is developed for traffic monitoring including vehicle tracking, counting, and classification. A heuristic approach is applied in developing this system. The system is divided into several parts, and several different functional components have been built and tested using some traffic video sequences. Evaluations are carried out to show that this system is robust and can be developed towards real-time applications

    Vision-based toddler tracking at home

    Get PDF
    This paper presents a vision-based toddler tracking system for detecting risk factors of a toddler's fall within the home environment. The risk factors have environmental and behavioral aspects and the research in this paper focuses on the behavioral aspects. Apart from common image processing tasks such as background subtraction, the vision-based toddler tracking involves human classification, acquisition of motion and position information, and handling of regional merges and splits. The human classification is based on dynamic motion vectors of the human body. The center of mass of each contour is detected and connected with the closest center of mass in the next frame to obtain position, speed, and directional information. This tracking system is further enhanced by dealing with regional merges and splits due to multiple object occlusions. In order to identify the merges and splits, two directional detections of closest region centers are conducted between every two successive frames. Merges and splits of a single object due to errors in the background subtraction are also handled. The tracking algorithms have been developed, implemented and tested

    A smart vision sensor for detecting risk factors of a toddler's fall in a home environment

    Get PDF
    This paper presents a smart vision sensor for detecting risk factors of a toddler's fall in an indoor home environment assisting parents' supervision to prevent fall injuries. We identified the risk factors by analyzing real fall injury stories and referring to a related organization's suggestions to prevent falls. In order to detect the risk factors using computer vision, two major image processing methods, clutter detection and toddler tracking, were studied with using only one commercial web-camera. For practical purposes, there is no need for a toddler to wear any sensors or markers. The algorithms for detection have been developed, implemented and tested

    Motion Segmentation for Autonomous Robots Using 3D Point Cloud Data

    Get PDF
    Achieving robot autonomy is an extremely challenging task and it starts with developing algorithms that help the robot understand how humans perceive the environment around them. Once the robot understands how to make sense of its environment, it is easy to make efficient decisions about safe movement. It is hard for robots to perform tasks that come naturally to humans like understanding signboards, classifying traffic lights, planning path around dynamic obstacles, etc. In this work, we take up one such challenge of motion segmentation using Light Detection and Ranging (LiDAR) point clouds. Motion segmentation is the task of classifying a point as either moving or static. As the ego-vehicle moves along the road, it needs to detect moving cars with very high certainty as they are the areas of interest which provide cues to the ego-vehicle to plan it\u27s motion. Motion segmentation algorithms segregate moving cars from static cars to give more importance to dynamic obstacles. In contrast to the usual LiDAR scan representations like range images and regular grid, this work uses a modern representation of LiDAR scans using permutohedral lattices. This representation gives ease of representing unstructured LiDAR points in an efficient lattice structure. We propose a machine learning approach to perform motion segmentation. The network architecture takes in two sequential point clouds and performs convolutions on them to estimate if 3D points from the first point cloud are moving or static. Using two temporal point clouds help the network in learning what features constitute motion. We have trained and tested our learning algorithm on the FlyingThings3D dataset and a modified KITTI dataset with simulated motion

    A comprehensive review of vehicle detection using computer vision

    Get PDF
    A crucial step in designing intelligent transport systems (ITS) is vehicle detection. The challenges of vehicle detection in urban roads arise because of camera position, background variations, occlusion, multiple foreground objects as well as vehicle pose. The current study provides a synopsis of state-of-the-art vehicle detection techniques, which are categorized according to motion and appearance-based techniques starting with frame differencing and background subtraction until feature extraction, a more complicated model in comparison. The advantages and disadvantages among the techniques are also highlighted with a conclusion as to the most accurate one for vehicle detection
    • …
    corecore