314 research outputs found

    Recent Advances in Machine Learning Applied to Ultrasound Imaging

    Get PDF
    Machine learning (ML) methods are pervading an increasing number of fields of application because of their capacity to effectively solve a wide variety of challenging problems. The employment of ML techniques in ultrasound imaging applications started several years ago but the scientific interest in this issue has increased exponentially in the last few years. The present work reviews the most recent (2019 onwards) implementations of machine learning techniques for two of the most popular ultrasound imaging fields, medical diagnostics and non-destructive evaluation. The former, which covers the major part of the review, was analyzed by classifying studies according to the human organ investigated and the methodology (e.g., detection, segmentation, and/or classification) adopted, while for the latter, some solutions to the detection/classification of material defects or particular patterns are reported. Finally, the main merits of machine learning that emerged from the study analysis are summarized and discussed. © 2022 by the authors. Licensee MDPI, Basel, Switzerland

    A Non-Invasive Follicular Thyroid Cancer Risk Prediction System Based on Deep Hybrid Multi-feature Fusion Network

    Get PDF
    Objective A non-invasive assessment of the risk of benign and malignant follicular thyroid cancer is invaluable in the choice of treatment options. The extraction and fusion of multidimensional features from ultrasound images of follicular thyroid cancer is decisive in improving the accuracy of identifying benign and malignant thyroid cancer. This paper presents a non-invasive preoperative benign and malignant risk assessment system for follicular thyroid cancer, based on the proposed deep feature extraction and fusion of ultrasound images of follicular thyroid cancer. Methods First, this study uses a convolution neural network (CNN) to obtain a global feature map of the image, and the fusion of global features cropped to local features to identify tumor images. Secondly, this tumour image is also extracted by googleNet and ResNet respectively to extract features and recognize the image. Finally, we employ an averaging algorithm to obtain the final recognition results.Results The experimental results show that the method proposed in this study achieved 89.95% accuracy, 88.46% sensitivity, 91.30% specificity and an AUC value of 96.69% in the local dataset obtained from Peking University Shenzhen Hospital, all of which are far superior to other models.Conclusion In this study, a non-invasive risk prediction system is proposed for ultrasound images of thyroid follicular tumours. We solve the problem of unbalanced sample distribution by means of an image enhancement algorithm. In order to obtain enough features to differentiate ultrasound images, a three-branched feature extraction network was designed in this study, and a balance of sensitivity and specificity is ensured by an averaging algorithm
    • …
    corecore