7,252 research outputs found

    A Comprehensive Survey on Heart Sound Analysis in the Deep Learning Era

    Full text link
    Heart sound auscultation has been demonstrated to be beneficial in clinical usage for early screening of cardiovascular diseases. Due to the high requirement of well-trained professionals for auscultation, automatic auscultation benefiting from signal processing and machine learning can help auxiliary diagnosis and reduce the burdens of training professional clinicians. Nevertheless, classic machine learning is limited to performance improvement in the era of big data. Deep learning has achieved better performance than classic machine learning in many research fields, as it employs more complex model architectures with stronger capability of extracting effective representations. Deep learning has been successfully applied to heart sound analysis in the past years. As most review works about heart sound analysis were given before 2017, the present survey is the first to work on a comprehensive overview to summarise papers on heart sound analysis with deep learning in the past six years 2017--2022. We introduce both classic machine learning and deep learning for comparison, and further offer insights about the advances and future research directions in deep learning for heart sound analysis

    A survey on artificial intelligence-based acoustic source identification

    Get PDF
    The concept of Acoustic Source Identification (ASI), which refers to the process of identifying noise sources has attracted increasing attention in recent years. The ASI technology can be used for surveillance, monitoring, and maintenance applications in a wide range of sectors, such as defence, manufacturing, healthcare, and agriculture. Acoustic signature analysis and pattern recognition remain the core technologies for noise source identification. Manual identification of acoustic signatures, however, has become increasingly challenging as dataset sizes grow. As a result, the use of Artificial Intelligence (AI) techniques for identifying noise sources has become increasingly relevant and useful. In this paper, we provide a comprehensive review of AI-based acoustic source identification techniques. We analyze the strengths and weaknesses of AI-based ASI processes and associated methods proposed by researchers in the literature. Additionally, we did a detailed survey of ASI applications in machinery, underwater applications, environment/event source recognition, healthcare, and other fields. We also highlight relevant research directions

    Predicting Cardiovascular Disorders Through Stethoscope Audio Using Convolutional Neural Network

    Get PDF
    Cardiovascular disorders pose a significant global health challenge, resulting in a substantial number of annual deaths. Early and accurate prediction of heart disorders is crucial to mitigate their impact on individuals and healthcare systems. In this study, we explore the potential of Convolutional Neural Network in automating heart disease prediction using spectrogram data. The dataset comprises audio recordings collected from the general public via an iPhone app and a clinical trial using a digital stethoscope. We preprocess the data to obtain spectrograms and design a Convolutional Neural Network architecture to classify heart sounds into distinct categories. The Convolutional Neural Network exhibits promising performance, achieving an accuracy of approximately 77%. Our research highlights the opportunity to leverage Convolutional Neural Network in this context, paving the way for advanced automated cardiac diagnostics. Keywords: Cardiovascular disorders, Convolutional neural network DOI: 10.7176/RHSS/13-14-02 Publication date:August 31st 202

    Artificial intelligence and automation in valvular heart diseases

    Get PDF
    Artificial intelligence (AI) is gradually changing every aspect of social life, and healthcare is no exception. The clinical procedures that were supposed to, and could previously only be handled by human experts can now be carried out by machines in a more accurate and efficient way. The coming era of big data and the advent of supercomputers provides great opportunities to the development of AI technology for the enhancement of diagnosis and clinical decision-making. This review provides an introduction to AI and highlights its applications in the clinical flow of diagnosing and treating valvular heart diseases (VHDs). More specifically, this review first introduces some key concepts and subareas in AI. Secondly, it discusses the application of AI in heart sound auscultation and medical image analysis for assistance in diagnosing VHDs. Thirdly, it introduces using AI algorithms to identify risk factors and predict mortality of cardiac surgery. This review also describes the state-of-the-art autonomous surgical robots and their roles in cardiac surgery and intervention
    corecore