1,469 research outputs found

    Confidence bounds of petrophysical predictions from conventional neural networks

    Get PDF
    Neural networks are powerful tools for solving the complex regression problems which abound in geosciences. Estimation of prediction confidence from neural networks is an important area. Many procedures are available to date, but it is often tedious for practitioners to implement such procedures without significant modification of the existing learning algorithms. In many cases, the procedures are also computationally intensive. This paper presents a practical solution using conventional backpropagation networks with simple data pre-processing and post-processing algorithms. The methodology involves conversions of the target outputs into linguistic variables (classes) prior to learning. When the classification network converges, minimum and maximum predictions are derived from the output activations using a simple averaging algorithm. Two examples from petroleum reservoirs are used to demonstrate the proposed methodology. The results show that the confidence bounds of the petrophysical predictions are realistic in both cases. The proposed methodology is generally useful, and can be implemented in simple spreadsheets without altering any existing neural network code

    Implicit Full Waveform Inversion with Deep Neural Representation

    Full text link
    Full waveform inversion (FWI) commonly stands for the state-of-the-art approach for imaging subsurface structures and physical parameters, however, its implementation usually faces great challenges, such as building a good initial model to escape from local minima, and evaluating the uncertainty of inversion results. In this paper, we propose the implicit full waveform inversion (IFWI) algorithm using continuously and implicitly defined deep neural representations. Compared to FWI, which is sensitive to the initial model, IFWI benefits from the increased degrees of freedom with deep learning optimization, thus allowing to start from a random initialization, which greatly reduces the risk of non-uniqueness and being trapped in local minima. Both theoretical and experimental analyses indicates that, given a random initial model, IFWI is able to converge to the global minimum and produce a high-resolution image of subsurface with fine structures. In addition, uncertainty analysis of IFWI can be easily performed by approximating Bayesian inference with various deep learning approaches, which is analyzed in this paper by adding dropout neurons. Furthermore, IFWI has a certain degree of robustness and strong generalization ability that are exemplified in the experiments of various 2D geological models. With proper setup, IFWI can also be well suited for multi-scale joint geophysical inversion

    Ensemble parameter estimation for graphical models

    Full text link
    Parameter Estimation is one of the key issues involved in the discovery of graphical models from data. Current state of the art methods have demonstrated their abilities in different kind of graphical models. In this paper, we introduce ensemble learning into the process of parameter estimation, and examine ensemble parameter estimation methods for different kind of graphical models under complete data set and incomplete data set. We provide experimental results which show that ensemble method can achieve an improved result over the base parameter estimation method in terms of accuracy. In addition, the method is amenable to parallel or distributed processing, which is an important characteristic for data mining in large data sets.<br /

    An Application of Artificial Neural Network (ANN) for Landslide Hazard Mapping, Susceptibility and Early Warning System: A Review

    Get PDF
    An Application of ANN for Landslide Early Warning System in Darjeeling hill regio

    Coordinated Machine Learning and Decision Support for Situation Awareness

    Get PDF
    For applications such as force protection, an effective decision maker needs to maintain an unambiguous grasp of the environment. Opportunities exist to leverage computational mechanisms for the adaptive fusion of diverse information sources. The current research employs neural networks and Markov chains to process information from sources including sensors, weather data, and law enforcement. Furthermore, the system operator\u27s input is used as a point of reference for the machine learning algorithms. More detailed features of the approach are provided, along with an example force protection scenario

    Amateur radio sensing technique using a combination of energy detection and waveform classification

    Get PDF
    A critical problem in spectrum sensing is to create a detection algorithm and test statistics. The existing approaches employ the energy level of each channel of interest. However, this feature cannot accurately characterize the actual application of public amateur radio. The transmitted signal is not continuous and may consist only of a carrier frequency without information. This paper proposes a novel energy detection and waveform feature classification (EDWC) algorithm to detect speech signals in public frequency bands based on energy detection and supervised machine learning. The energy level, descriptive statistics, and spectral measurements of radio channels are treated as feature vectors and classifiers to determine whether the signal is speech or noise. The algorithm is validated using actual frequency modulation (FM) broadcasting and public amateur signals. The proposed EDWC algorithm's performance is evaluated in terms of training duration, classification time, and receiver operating characteristic. The simulation and experimental outcomes show that the EDWC can distinguish and classify waveform characteristics for spectrum sensing purposes, particularly for the public amateur use case. The novel technical results can detect and classify public radio frequency signals as voice signals for speech communication or just noise, which is essential and can be applied in security aspects

    Coordinated machine learning and decision support for situation awareness.

    Full text link
    • …
    corecore