8,403 research outputs found

    Open problems, questions, and challenges in finite-dimensional integrable systems

    Get PDF
    The paper surveys open problems and questions related to different aspects of integrable systems with finitely many degrees of freedom. Many of the open problems were suggested by the participants of the conference “Finite-dimensional Integrable Systems, FDIS 2017” held at CRM, Barcelona in July 2017.Postprint (updated version

    Examples of integrable and non-integrable systems on singular symplectic manifolds

    Full text link
    We present a collection of examples borrowed from celestial mechanics and projective dynamics. In these examples symplectic structures with singularities arise naturally from regularization transformations, Appell's transformation or classical changes like McGehee coordinates, which end up blowing up the symplectic structure or lowering its rank at certain points. The resulting geometrical structures that model these examples are no longer symplectic but symplectic with singularities which are mainly of two types: bmb^m-symplectic and mm-folded symplectic structures. These examples comprise the three body problem as non-integrable exponent and some integrable reincarnations such as the two fixed-center problem. Given that the geometrical and dynamical properties of bmb^m-symplectic manifolds and folded symplectic manifolds are well-understood [GMP, GMP2, GMPS, KMS, Ma, CGP, GL,GLPR, MO, S, GMW], we envisage that this new point of view in this collection of examples can shed some light on classical long-standing problems concerning the study of dynamical properties of these systems seen from the Poisson viewpoint.Comment: 14 page

    Causal structures and causal boundaries

    Full text link
    We give an up-to-date perspective with a general overview of the theory of causal properties, the derived causal structures, their classification and applications, and the definition and construction of causal boundaries and of causal symmetries, mostly for Lorentzian manifolds but also in more abstract settings.Comment: Final version. To appear in Classical and Quantum Gravit

    The Construction of Mirror Symmetry

    Get PDF
    The construction of mirror symmetry in the heterotic string is reviewed in the context of Calabi-Yau and Landau-Ginzburg compactifications. This framework has the virtue of providing a large subspace of the configuration space of the heterotic string, probing its structure far beyond the present reaches of solvable models. The construction proceeds in two stages: First all singularities/catastrophes which lead to ground states of the heterotic string are found. It is then shown that not all ground states described in this way are independent but that certain classes of these LG/CY string vacua can be related to other, simpler, theories via a process involving fractional transformations of the order parameters as well as orbifolding. This construction has far reaching consequences. Firstly it allows for a systematic identification of mirror pairs that appear abundantly in this class of string vacua, thereby showing that the emerging mirror symmetry is not accidental. This is important because models with mirror flipped spectra are a priori independent theories, described by distinct CY/LG models. It also shows that mirror symmetry is not restricted to the space of string vacua described by theories based on Fermat potentials (corresponding to minimal tensor models). Furthermore it shows the need for a better set of coordinates of the configuration space or else the structure of this space will remain obscure. While the space of LG vacua is {\it not} completely mirror symmetric, results described in the last part suggest that the space of Landau--Ginburg {\it orbifolds} possesses this symmetry.Comment: 58 pages, Latex file, HD-THEP-92-1

    Collisions of particles in locally AdS spacetimes I. Local description and global examples

    Get PDF
    We investigate 3-dimensional globally hyperbolic AdS manifolds containing "particles", i.e., cone singularities along a graph Γ\Gamma. We impose physically relevant conditions on the cone singularities, e.g. positivity of mass (angle less than 2π2\pi on time-like singular segments). We construct examples of such manifolds, describe the cone singularities that can arise and the way they can interact (the local geometry near the vertices of Γ\Gamma). We then adapt to this setting some notions like global hyperbolicity which are natural for Lorentz manifolds, and construct some examples of globally hyperbolic AdS manifolds with interacting particles.Comment: This is a rewritten version of the first part of arxiv:0905.1823. That preprint was too long and contained two types of results, so we sliced it in two. This is the first part. Some sections have been completely rewritten so as to be more readable, at the cost of slightly less general statements. Others parts have been notably improved to increase readabilit

    An Invitation to Singular Symplectic Geometry

    Get PDF
    In this paper we analyze in detail a collection of motivating examples to consider bmb^m-symplectic forms and folded-type symplectic structures. In particular, we provide models in Celestial Mechanics for every bmb^m-symplectic structure. At the end of the paper, we introduce the odd-dimensional analogue to bb-symplectic manifolds: bb-contact manifolds.Comment: 14 pages, 1 figur

    Hamiltonian boundary value problems, conformal symplectic symmetries, and conjugate loci

    Full text link
    In this paper we continue our study of bifurcations of solutions of boundary-value problems for symplectic maps arising as Hamiltonian diffeomorphisms. These have been shown to be connected to catastrophe theory via generating functions and ordinary and reversal phase space symmetries have been considered. Here we present a convenient, coordinate free framework to analyse separated Lagrangian boundary value problems which include classical Dirichlet, Neumann and Robin boundary value problems. The framework is then used to {prove the existence of obstructions arising from} conformal symplectic symmetries on the bifurcation behaviour of solutions to Hamiltonian boundary value problems. Under non-degeneracy conditions, a group action by conformal symplectic symmetries has the effect that the flow map cannot degenerate in a direction which is tangential to the action. This imposes restrictions on which singularities can occur in boundary value problems. Our results generalise classical results about conjugate loci on Riemannian manifolds to a large class of Hamiltonian boundary value problems with, for example, scaling symmetries
    • …
    corecore