98 research outputs found

    Multisource and Multitemporal Data Fusion in Remote Sensing

    Get PDF
    The sharp and recent increase in the availability of data captured by different sensors combined with their considerably heterogeneous natures poses a serious challenge for the effective and efficient processing of remotely sensed data. Such an increase in remote sensing and ancillary datasets, however, opens up the possibility of utilizing multimodal datasets in a joint manner to further improve the performance of the processing approaches with respect to the application at hand. Multisource data fusion has, therefore, received enormous attention from researchers worldwide for a wide variety of applications. Moreover, thanks to the revisit capability of several spaceborne sensors, the integration of the temporal information with the spatial and/or spectral/backscattering information of the remotely sensed data is possible and helps to move from a representation of 2D/3D data to 4D data structures, where the time variable adds new information as well as challenges for the information extraction algorithms. There are a huge number of research works dedicated to multisource and multitemporal data fusion, but the methods for the fusion of different modalities have expanded in different paths according to each research community. This paper brings together the advances of multisource and multitemporal data fusion approaches with respect to different research communities and provides a thorough and discipline-specific starting point for researchers at different levels (i.e., students, researchers, and senior researchers) willing to conduct novel investigations on this challenging topic by supplying sufficient detail and references

    Statistical and Machine Learning Models for Remote Sensing Data Mining - Recent Advancements

    Get PDF
    This book is a reprint of the Special Issue entitled "Statistical and Machine Learning Models for Remote Sensing Data Mining - Recent Advancements" that was published in Remote Sensing, MDPI. It provides insights into both core technical challenges and some selected critical applications of satellite remote sensing image analytics

    Novel pattern recognition methods for classification and detection in remote sensing and power generation applications

    Get PDF
    Novel pattern recognition methods for classification and detection in remote sensing and power generation application

    Hyperspectral Remote Sensing Data Analysis and Future Challenges

    Full text link

    High resolution urban monitoring using neural network and transform algorithms

    Get PDF
    The advent of new high spatial resolution optical satellite imagery has greatly increased our ability to monitor land cover from space. Satellite observations are carried out regularly and continuously and provide a great deal of information on land cover over large areas. High spatial resolution imagery makes it possible to overcome the “mixed-pixel” problem inherent in more moderate resolution satellite sensors. At the same time, high-resolution images present a new challenge over other satellite systems since a relatively large amount of data must be analyzed, processed, and classified in order to characterize land cover features and to produce classification maps. Actually, in spite of the great potential of remote sensing as a source of information on land cover and the long history of research devoted to the extraction of land cover information from remotely sensed imagery, many problems have been encountered, and the accuracy of land cover maps derived from remotely sensed imagery has often been viewed as too low for operational users. This study focuses on high resolution urban monitoring using Neural Network (NN) analyses for land cover classification and change detection, and Fast Fourier Transform (FFT) evaluations of wavenumber spectra to characterize the spatial scales of land cover features. The contributions of the present work include: classification and change detection for urban areas using NN algorithms and multi-temporal very high resolution multi-spectral images (QuickBird, Digital Globe Co.); development and implementation of neural networks apt to classify a variety of multi-spectral images of cities arbitrarily located in the world; use of different wavenumber spectra produced by two-dimensional FFTs to understand the origin of significant features in the images of different urban environments subject to the subsequent classification; optimization of the neural net topology to classify urban environments, to produce thematic maps, and to analyze the urbanization processes. This work can considered as a first step in demonstrating how NN and FFT algorithms can contribute to the development of Image Information Mining (IMM) in Earth Observation

    Change detection of land use and land cover in an urban region with SPOT-5 images and partial Lanczos extreme learning machine

    Get PDF
    Satellite remote sensing technology and the science associated with evaluation of land use and land cover (LULC) in an urban region makes use of the wide range images and algorithms. Improved land management capacity is critically dependent on real-time or near real-time monitoring of land-use/land cover change (LUCC) to the extent to which solutions to a whole host of urban/rural interface development issues may be well managed promptly. Yet previous processing with LULC methods is often time-consuming, laborious, and tedious making the outputs unavailable within the required time window. This paper presents a new image classification approach based on a novel neural computing technique that is applied to identify the LULC patterns in a fast growing urban region with the aid of 2.5-meter resolution SPOT-5 image products. The classifier was constructed based on the partial Lanczos extreme learning machine (PL-ELM), which is a novel machine learning algorithm with fast learning speed and outstanding generalization performance. Since some different classes of LULC may be linked with similar spectral characteristics, texture features and vegetation indexes were extracted and included during the classification process to enhance the discernability. A validation procedure based on ground truth data and comparisons with some classic classifiers prove the credibility of the proposed PL-ELM classification approach in terms of the classification accuracy as well as the processing speed. A case study in Dalian Development Area (DDA) with the aid of the SPOT-5 satellite images collected in the year of 2003 and 2007 and PL-ELM fully supports the monitoring needs and aids in the rapid change detection with respect to both urban expansion and coastal land reclamations
    corecore