2,969 research outputs found

    A novel Big Data analytics and intelligent technique to predict driver's intent

    Get PDF
    Modern age offers a great potential for automatically predicting the driver's intent through the increasing miniaturization of computing technologies, rapid advancements in communication technologies and continuous connectivity of heterogeneous smart objects. Inside the cabin and engine of modern cars, dedicated computer systems need to possess the ability to exploit the wealth of information generated by heterogeneous data sources with different contextual and conceptual representations. Processing and utilizing this diverse and voluminous data, involves many challenges concerning the design of the computational technique used to perform this task. In this paper, we investigate the various data sources available in the car and the surrounding environment, which can be utilized as inputs in order to predict driver's intent and behavior. As part of investigating these potential data sources, we conducted experiments on e-calendars for a large number of employees, and have reviewed a number of available geo referencing systems. Through the results of a statistical analysis and by computing location recognition accuracy results, we explored in detail the potential utilization of calendar location data to detect the driver's intentions. In order to exploit the numerous diverse data inputs available in modern vehicles, we investigate the suitability of different Computational Intelligence (CI) techniques, and propose a novel fuzzy computational modelling methodology. Finally, we outline the impact of applying advanced CI and Big Data analytics techniques in modern vehicles on the driver and society in general, and discuss ethical and legal issues arising from the deployment of intelligent self-learning cars

    M-health review: joining up healthcare in a wireless world

    Get PDF
    In recent years, there has been a huge increase in the use of information and communication technologies (ICT) to deliver health and social care. This trend is bound to continue as providers (whether public or private) strive to deliver better care to more people under conditions of severe budgetary constraint

    A model for context awareness for mobile applications using multiple-input sources

    Get PDF
    Context-aware computing enables mobile applications to discover and benefit from valuable context information, such as user location, time of day and current activity. However, determining the users’ context throughout their daily activities is one of the main challenges of context-aware computing. With the increasing number of built-in mobile sensors and other input sources, existing context models do not effectively handle context information related to personal user context. The objective of this research was to develop an improved context-aware model to support the context awareness needs of mobile applications. An existing context-aware model was selected as the most complete model to use as a basis for the proposed model to support context awareness in mobile applications. The existing context-aware model was modified to address the shortcomings of existing models in dealing with context information related to personal user context. The proposed model supports four different context dimensions, namely Physical, User Activity, Health and User Preferences. A prototype, called CoPro was developed, based on the proposed model, to demonstrate the effectiveness of the model. Several experiments were designed and conducted to determine if CoPro was effective, reliable and capable. CoPro was considered effective as it produced low-level context as well as inferred context. The reliability of the model was confirmed by evaluating CoPro using Quality of Context (QoC) metrics such as Accuracy, Freshness, Certainty and Completeness. CoPro was also found to be capable of dealing with the limitations of the mobile computing platform such as limited processing power. The research determined that the proposed context-aware model can be used to successfully support context awareness in mobile applications. Design recommendations were proposed and future work will involve converting the CoPro prototype into middleware in the form of an API to provide easier access to context awareness support in mobile applications

    CHORUS Deliverable 2.2: Second report - identification of multi-disciplinary key issues for gap analysis toward EU multimedia search engines roadmap

    Get PDF
    After addressing the state-of-the-art during the first year of Chorus and establishing the existing landscape in multimedia search engines, we have identified and analyzed gaps within European research effort during our second year. In this period we focused on three directions, notably technological issues, user-centred issues and use-cases and socio- economic and legal aspects. These were assessed by two central studies: firstly, a concerted vision of functional breakdown of generic multimedia search engine, and secondly, a representative use-cases descriptions with the related discussion on requirement for technological challenges. Both studies have been carried out in cooperation and consultation with the community at large through EC concertation meetings (multimedia search engines cluster), several meetings with our Think-Tank, presentations in international conferences, and surveys addressed to EU projects coordinators as well as National initiatives coordinators. Based on the obtained feedback we identified two types of gaps, namely core technological gaps that involve research challenges, and “enablers”, which are not necessarily technical research challenges, but have impact on innovation progress. New socio-economic trends are presented as well as emerging legal challenges

    CHORUS Deliverable 2.1: State of the Art on Multimedia Search Engines

    Get PDF
    Based on the information provided by European projects and national initiatives related to multimedia search as well as domains experts that participated in the CHORUS Think-thanks and workshops, this document reports on the state of the art related to multimedia content search from, a technical, and socio-economic perspective. The technical perspective includes an up to date view on content based indexing and retrieval technologies, multimedia search in the context of mobile devices and peer-to-peer networks, and an overview of current evaluation and benchmark inititiatives to measure the performance of multimedia search engines. From a socio-economic perspective we inventorize the impact and legal consequences of these technical advances and point out future directions of research

    Smart Geographic object: Toward a new understanding of GIS Technology in Ubiquitous Computing

    Get PDF
    One of the fundamental aspects of ubiquitous computing is the instrumentation of the real world by smart devices. This instrumentation constitutes an opportunity to rethink the interactions between human beings and their environment on the one hand, and between the components of this environment on the other. In this paper we discuss what this understanding of ubiquitous computing can bring to geographic science and particularly to GIS technology. Our main idea is the instrumentation of the geographic environment through the instrumentation of geographic objects composing it. And then investigate how this instrumentation can meet the current limitations of GIS technology, and offers a new stage of rapprochement between the earth and its abstraction. As result, the current research work proposes a new concept we named Smart Geographic Object SGO. The latter is a convergence point between the smart objects and geographic objects, two concepts appertaining respectively to

    Mobile-based online data mining : outdoor activity recognition

    Get PDF
    One of the unique features of mobile applications is the context awareness. The mobility and power afforded by smartphones allow users to interact more directly and constantly with the external world more than ever before. The emerging capabilities of smartphones are fueling a rise in the use of mobile phones as input devices for a great range of application fields; one of these fields is the activity recognition. In pervasive computing, activity recognition has a significant weight because it can be applied to many real-life, human-centric problems. This important role allows providing services to various application domains ranging from real-time traffic monitoring to fitness monitoring, social networking, marketing and healthcare. However, one of the major problems that can shatter any mobile-based activity recognition model is the limited battery life. It represents a big hurdle for the quality and the continuity of the service. Indeed, excessive power consumption may become a major obstacle to broader acceptance context-aware mobile applications, no matter how useful the proposed service may be. We present during this thesis a novel unsupervised battery-aware approach to online recognize users’ outdoor activities without depleting the mobile resources. We succeed in associating the places visited by individuals during their movements to meaningful human activities. Our approach includes novel models that incrementally cluster users’ movements into different types of activities without any massive use of historical records. To optimize battery consumption, our approach behaves variably according to users’ behaviors and the remaining battery level. Moreover, we propose to learn users’ habits in order to reduce the activity recognition computation. Our innovative battery-friendly method combines activity recognition and prediction in order to recognize users’ activities accurately without draining the battery of their phones. We show that our approach reduces significantly the battery consumption while keeping the same high accuracy. Une des caractĂ©ristiques uniques des applications mobiles est la sensibilitĂ© au contexte. La mobilitĂ© et la puissance de calcul offertes par les smartphones permettent aux utilisateurs d’interagir plus directement et en permanence avec le monde extĂ©rieur. Ces capacitĂ©s Ă©mergentes ont pu alimenter plusieurs champs d’applications comme le domaine de la reconnaissance d’activitĂ©s. Dans le domaine de l'informatique omniprĂ©sente, la reconnaissance des activitĂ©s humaines reçoit une attention particuliĂšre grĂące Ă  son implication profonde dans plusieurs problĂ©matiques de vie quotidienne. Ainsi, ce domaine est devenu une piĂšce majeure qui fournit des services Ă  un large Ă©ventail de domaines comme la surveillance du trafic en temps rĂ©el, les rĂ©seaux sociaux, le marketing et la santĂ©. Cependant, l'un des principaux problĂšmes qui peuvent compromettre un modĂšle de reconnaissance d’activitĂ© sur les smartphones est la durĂ©e de vie limitĂ©e de la batterie. Ce handicap reprĂ©sente un grand obstacle pour la qualitĂ© et la continuitĂ© du service. En effet, la consommation d'Ă©nergie excessive peut devenir un obstacle majeur aux applications sensibles au contexte, peu importe Ă  quel point ce service est utile. Nous prĂ©sentons dans de cette thĂšse une nouvelle approche non supervisĂ©e qui permet la dĂ©tection incrĂ©mentale des activitĂ©s externes sans Ă©puiser les ressources du tĂ©lĂ©phone. Nous parvenons Ă  associer efficacement les lieux visitĂ©s par des individus lors de leurs dĂ©placements Ă  des activitĂ©s humaines significatives. Notre approche comprend de nouveaux modĂšles de classification en ligne des activitĂ©s humaines sans une utilisation massive des donnĂ©es historiques. Pour optimiser la consommation de la batterie, notre approche se comporte de façon variable selon les comportements des utilisateurs et le niveau de la batterie restant. De plus, nous proposons d'apprendre les habitudes des utilisateurs afin de rĂ©duire la complexitĂ© de l’algorithme de reconnaissance d'activitĂ©s. Pour se faire, notre mĂ©thode combine la reconnaissance d’activitĂ©s et la prĂ©diction des prochaines activitĂ©s afin d’atteindre une consommation raisonnable des ressources du tĂ©lĂ©phone. Nous montrons que notre proposition rĂ©duit remarquablement la consommation de la batterie tout en gardant un taux de prĂ©cision Ă©levĂ©

    Mobile Health Technologies

    Get PDF
    Mobile Health Technologies, also known as mHealth technologies, have emerged, amongst healthcare providers, as the ultimate Technologies-of-Choice for the 21st century in delivering not only transformative change in healthcare delivery, but also critical health information to different communities of practice in integrated healthcare information systems. mHealth technologies nurture seamless platforms and pragmatic tools for managing pertinent health information across the continuum of different healthcare providers. mHealth technologies commonly utilize mobile medical devices, monitoring and wireless devices, and/or telemedicine in healthcare delivery and health research. Today, mHealth technologies provide opportunities to record and monitor conditions of patients with chronic diseases such as asthma, Chronic Obstructive Pulmonary Diseases (COPD) and diabetes mellitus. The intent of this book is to enlighten readers about the theories and applications of mHealth technologies in the healthcare domain
    • 

    corecore