77 research outputs found

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The MAVEBA Workshop proceedings, held on a biannual basis, collect the scientific papers presented both as oral and poster contributions, during the conference. The main subjects are: development of theoretical and mechanical models as an aid to the study of main phonatory dysfunctions, as well as the biomedical engineering methods for the analysis of voice signals and images, as a support to clinical diagnosis and classification of vocal pathologies

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The MAVEBA Workshop proceedings, held on a biannual basis, collect the scientific papers presented both as oral and poster contributions, during the conference. The main subjects are: development of theoretical and mechanical models as an aid to the study of main phonatory dysfunctions, as well as the biomedical engineering methods for the analysis of voice signals and images, as a support to clinical diagnosis and classification of vocal pathologies

    Accurate telemonitoring of Parkinson's disease symptom severity using nonlinear speech signal processing and statistical machine learning

    Get PDF
    This study focuses on the development of an objective, automated method to extract clinically useful information from sustained vowel phonations in the context of Parkinson’s disease (PD). The aim is twofold: (a) differentiate PD subjects from healthy controls, and (b) replicate the Unified Parkinson’s Disease Rating Scale (UPDRS) metric which provides a clinical impression of PD symptom severity. This metric spans the range 0 to 176, where 0 denotes a healthy person and 176 total disability. Currently, UPDRS assessment requires the physical presence of the subject in the clinic, is subjective relying on the clinical rater’s expertise, and logistically costly for national health systems. Hence, the practical frequency of symptom tracking is typically confined to once every several months, hindering recruitment for large-scale clinical trials and under-representing the true time scale of PD fluctuations. We develop a comprehensive framework to analyze speech signals by: (1) extracting novel, distinctive signal features, (2) using robust feature selection techniques to obtain a parsimonious subset of those features, and (3a) differentiating PD subjects from healthy controls, or (3b) determining UPDRS using powerful statistical machine learning tools. Towards this aim, we also investigate 10 existing fundamental frequency (F_0) estimation algorithms to determine the most useful algorithm for this application, and propose a novel ensemble F_0 estimation algorithm which leads to a 10% improvement in accuracy over the best individual approach. Moreover, we propose novel feature selection schemes which are shown to be very competitive against widely-used schemes which are more complex. We demonstrate that we can successfully differentiate PD subjects from healthy controls with 98.5% overall accuracy, and also provide rapid, objective, and remote replication of UPDRS assessment with clinically useful accuracy (approximately 2 UPDRS points from the clinicians’ estimates), using only simple, self-administered, and non-invasive speech tests. The findings of this study strongly support the use of speech signal analysis as an objective basis for practical clinical decision support tools in the context of PD assessment.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications (MAVEBA) came into being in 1999 from the particularly felt need of sharing know-how, objectives and results between areas that until then seemed quite distinct such as bioengineering, medicine and singing. MAVEBA deals with all aspects concerning the study of the human voice with applications ranging from the newborn to the adult and elderly. Over the years the initial issues have grown and spread also in other fields of research such as occupational voice disorders, neurology, rehabilitation, image and video analysis. MAVEBA takes place every two years in Firenze, Italy. This edition celebrates twenty-two years of uninterrupted and successful research in the field of voice analysis

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications (MAVEBA) came into being in 1999 from the particularly felt need of sharing know-how, objectives and results between areas that until then seemed quite distinct such as bioengineering, medicine and singing. MAVEBA deals with all aspects concerning the study of the human voice with applications ranging from the neonate to the adult and elderly. Over the years the initial issues have grown and spread also in other aspects of research such as occupational voice disorders, neurology, rehabilitation, image and video analysis. MAVEBA takes place every two years always in Firenze, Italy

    Models and analysis of vocal emissions for biomedical applications: 5th International Workshop: December 13-15, 2007, Firenze, Italy

    Get PDF
    The MAVEBA Workshop proceedings, held on a biannual basis, collect the scientific papers presented both as oral and poster contributions, during the conference. The main subjects are: development of theoretical and mechanical models as an aid to the study of main phonatory dysfunctions, as well as the biomedical engineering methods for the analysis of voice signals and images, as a support to clinical diagnosis and classification of vocal pathologies. The Workshop has the sponsorship of: Ente Cassa Risparmio di Firenze, COST Action 2103, Biomedical Signal Processing and Control Journal (Elsevier Eds.), IEEE Biomedical Engineering Soc. Special Issues of International Journals have been, and will be, published, collecting selected papers from the conference

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications (MAVEBA) came into being in 1999 from the particularly felt need of sharing know-how, objectives and results between areas that until then seemed quite distinct such as bioengineering, medicine and singing. MAVEBA deals with all aspects concerning the study of the human voice with applications ranging from the neonate to the adult and elderly. Over the years the initial issues have grown and spread also in other aspects of research such as occupational voice disorders, neurology, rehabilitation, image and video analysis. MAVEBA takes place every two years always in Firenze, Italy. This edition celebrates twenty years of uninterrupted and succesfully research in the field of voice analysis

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The Models and Analysis of Vocal Emissions with Biomedical Applications (MAVEBA) workshop came into being in 1999 from the particularly felt need of sharing know-how, objectives and results between areas that until then seemed quite distinct such as bioengineering, medicine and singing. MAVEBA deals with all aspects concerning the study of the human voice with applications ranging from the neonate to the adult and elderly. Over the years the initial issues have grown and spread also in other aspects of research such as occupational voice disorders, neurology, rehabilitation, image and video analysis. MAVEBA takes place every two years always in Firenze, Italy

    Models and analysis of vocal emissions for biomedical applications

    Get PDF
    This book of Proceedings collects the papers presented at the 4th International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications, MAVEBA 2005, held 29-31 October 2005, Firenze, Italy. The workshop is organised every two years, and aims to stimulate contacts between specialists active in research and industrial developments, in the area of voice analysis for biomedical applications. The scope of the Workshop includes all aspects of voice modelling and analysis, ranging from fundamental research to all kinds of biomedical applications and related established and advanced technologies

    Development of Markerless Systems for Automatic Analysis of Movements and Facial Expressions: Applications in Neurophysiology

    Get PDF
    This project is focused on the development of markerless methods for studying facial expressions and movements in neurology, focusing on Parkinson’s disease (PD) and disorders of consciousness (DOC). PD is a neurodegenerative illness that affects around 2% of the population over 65 years old. Impairments of voice/speech are among the main signs of PD. This set of impairments is called hypokinetic dysarthria, because of the reduced range of movements involved in speech. This reduction can be visible also in other facial muscles, leading to a hypomimia. Despite the high percentage of patients that suffer from dysarthria and hypomimia, only a few of them undergo speech therapy with the aim to improve the dynamic of articulatory/facial movements. The main reason is the lack of low cost methodologies that could be implemented at home. DOC after coma are Vegetative State (VS), characterized by the absence of self-awareness and awareness of the environment, and Minimally Conscious State (MCS), in which certain behaviors are sufficiently reproducible to be distinguished from reflex responses. The differential diagnosis between VS and MCS can be hard and prone to a high rate of misdiagnosis (~40%). This differential diagnosis is mainly based on neuro-behavioral scales. A key role to plan the rehabilitation in DOC patients is played by the first diagnosis after coma. In fact, MCS patients are more prone to a consciousness recovery than VS patients. Concerning PD the aim is the development of contactless systems that could be used to study symptoms related to speech and facial movements/expressions. The methods proposed here, based on acoustical analysis and video processing techniques could support patients during speech therapy also at home. Concerning DOC patients the project is focused on the assessment of reflex and cognitive responses to standardized stimuli. This would allow objectifying the perceptual analysis performed by clinicians
    • …
    corecore