521 research outputs found

    Classification of grasping tasks based on EEG-EMG coherence

    Full text link
    This work presents an innovative application of the well-known concept of cortico-muscular coherence for the classification of various motor tasks, i.e., grasps of different kinds of objects. Our approach can classify objects with different weights (motor-related features) and different surface frictions (haptics-related features) with high accuracy (over 0:8). The outcomes presented here provide information about the synchronization existing between the brain and the muscles during specific activities; thus, this may represent a new effective way to perform activity recognition

    Cortico-muscular coupling to control a hybrid brain-computer interface for upper limb motor rehabilitation: A pseudo-online study on stroke patients

    Get PDF
    Brain-Computer Interface (BCI) systems for motor rehabilitation after stroke have proven their efficacy to enhance upper limb motor recovery by reinforcing motor related brain activity. Hybrid BCIs (h-BCIs) exploit both central and peripheral activation and are frequently used in assistive BCIs to improve classification performances. However, in a rehabilitative context, brain and muscular features should be extracted to promote a favorable motor outcome, reinforcing not only the volitional control in the central motor system, but also the effective projection of motor commands to target muscles, i.e., central-to-peripheral communication. For this reason, we considered cortico-muscular coupling (CMC) as a feature for a h-BCI devoted to post-stroke upper limb motor rehabilitation. In this study, we performed a pseudo-online analysis on 13 healthy participants (CTRL) and 12 stroke patients (EXP) during executed (CTRL, EXP unaffected arm) and attempted (EXP affected arm) hand grasping and extension to optimize the translation of CMC computation and CMC-based movement detection from offline to online. Results showed that updating the CMC computation every 125 ms (shift of the sliding window) and accumulating two predictions before a final classification decision were the best trade-off between accuracy and speed in movement classification, independently from the movement type. The pseudo-online analysis on stroke participants revealed that both attempted and executed grasping/extension can be classified through a CMC-based movement detection with high performances in terms of classification speed (mean delay between movement detection and EMG onset around 580 ms) and accuracy (hit rate around 85%). The results obtained by means of this analysis will ground the design of a novel non-invasive h-BCI in which the control feature is derived from a combined EEG and EMG connectivity pattern estimated during upper limb movement attempts

    An EEG-EMG Correlation-based Brain-Computer Interface for Hand Orthosis Supported Neuro-Rehabilitation

    Get PDF
    Background Corticomuscular coupling has been investigated for long, to find out the underlying mechanisms behind cortical drives to produce different motor tasks. Although important in rehabilitation perspective, the use of corticomuscular coupling for driving brain-computer interface (BCI)-based neurorehabilitation is much ignored. This is primarily due to the fact that the EEG-EMG coherence popularly used to compute corticomuscular coupling, fails to produce sufficient accuracy in single-trial based prediction of motor tasks in a BCI system. New Method In this study, we have introduced a new corticomuscular feature extraction method based on the correlation between band-limited power time-courses (CBPT) associated with EEG and EMG. 16 healthy individuals and 8 hemiplegic patients participated in a BCI-based hand orthosis triggering task, to test the performance of the CBPT method. The healthy population was equally divided into two groups; one experimental group for CBPT-based BCI experiment and another control group for EEG-EMG coherence based BCI experiment. Results The classification accuracy of the CBPT-based BCI system was found to be 92.81±2.09% for the healthy experimental group and 84.53±4.58% for the patients’ group. Comparison with existing method The CBPT method significantly (p−value < 0.05) outperformed the conventional EEG-EMG coherence method in terms of classification accuracy. Conclusions The experimental results clearly indicate that the EEG-EMG CBPT is a better alternative as a corticomuscular feature to drive a BCI system. Additionally, it is also feasible to use the proposed method to design BCI-based robotic neurorehabilitation paradigms

    Advances in Clinical Neurophysiology

    Get PDF
    Including some of the newest advances in the field of neurophysiology, this book can be considered as one of the treasures that interested scientists would like to collect. It discusses many disciplines of clinical neurophysiology that are, currently, crucial in the practice as they explain methods and findings of techniques that help to improve diagnosis and to ensure better treatment. While trying to rely on evidence-based facts, this book presents some new ideas to be applied and tested in the clinical practice. Advances in Clinical Neurophysiology is important not only for the neurophysiologists but also for clinicians interested or working in wide range of specialties such as neurology, neurosurgery, intensive care units, pediatrics and so on. Generally, this book is written and designed to all those involved in, interpreting or requesting neurophysiologic tests

    Dimensionality Reduction for Classification of Object Weight from Electromyography

    Get PDF
    Electromyography (EMG) is a simple, non-invasive, and cost-effective technology for measuring muscle activity. However, multi-muscle EMG is also a noisy, complex, and high-dimensional signal. It has nevertheless been widely used in a host of human-machine-interface applications (electrical wheelchairs, virtual computer mice, prosthesis, robotic fingers, etc.) and, in particular, to measure the reach-and-grasp motions of the human hand. Here, we developed an automated pipeline to predict object weight in a reach-grasp-lift task from an open dataset, relying only on EMG data. In doing so, we shifted the focus from manual feature-engineering to automated feature-extraction by using pre-processed EMG signals and thus letting the algorithms select the features. We further compared intrinsic EMG features, derived from several dimensionality-reduction methods, and then ran several classification algorithms on these low-dimensional representations. We found that the Laplacian Eigenmap algorithm generally outperformed other dimensionality-reduction methods. What is more, optimal classification accuracy was achieved using a combination of Laplacian Eigenmaps (simple-minded) and k-Nearest Neighbors (88% F1 score for 3-way classification). Our results, using EMG alone, are comparable to other researchers’, who used EMG and EEG together, in the literature. A running-window analysis further suggests that our method captures information in the EMG signal quickly and remains stable throughout the time that subjects grasp and move the object

    Implementing physiologically-based approaches to improve Brain-Computer Interfaces usability in post-stroke motor rehabilitation

    Get PDF
    Stroke is one of the leading causes of long-term motor disability and, as such, directly impacts on daily living activities. Identifying new strategies to recover motor function is a central goal of clinical research. In the last years the approach to the post-stroke function restore has moved from the physical rehabilitation to the evidence-based neurological rehabilitation. Brain-Computer Interface (BCI) technology offers the possibility to detect, monitor and eventually modulate brain activity. The potential of guiding altered brain activity back to a physiological condition through BCI and the assumption that this recovery of brain activity leads to the restoration of behaviour is the key element for the use of BCI systems for therapeutic purposes. To bridge the gap between research-oriented methodology in BCI design and the usability of a system in the clinical realm requires efforts towards BCI signal processing procedures that would optimize the balance between system accuracy and usability. The thesis focused on this issue and aimed to propose new algorithms and signal processing procedures that, by combining physiological and engineering approaches, would provide the basis for designing more usable BCI systems to support post-stroke motor recovery. Results showed that introduce new physiologically-driven approaches to the pre-processing of BCI data, methods to support professional end-users in the BCI control parameter selection according to evidence-based rehabilitation principles and algorithms for the parameter adaptation in time make the BCI technology more affordable, more efficient, and more usable and, therefore, transferable to the clinical realm

    Synchronised neural signature of creative mental imagery in reality and augmented reality

    Get PDF
    Creativity, transforming imaginative thinking into reality, is a mental imagery simulation in essence. It can be incorporeal, concerns sophisticated and/or substantial thinking, and involves objects. In the present study, a mental imagery task consisting of creating a scene using familiar (FA) or abstract (AB) physical or virtual objects in real (RMI) and augmented reality (VMI) environments, and an execution task involving effectively creating a scene in augmented reality (VE), were utilised. The beta and gamma neural oscillations of healthy participants were recorded via a 32 channel wireless 10/20 international EGG system. In real and augmented environments and for both the mental imagery and execution tasks, the participants displayed a similar cortico-cortical neural signature essentially based on synchronous vs asynchronous beta and gamma oscillatory activities between anterior (i.e. frontal) and posterior (i.e. parietal, occipito-parietal and occipito-temporal) areas bilaterally. The findings revealed a transient synchronised neural architecture that appears to be consistent with the hypothesis according to which, creativity, because of its inherent complexity, cannot be confined to a single brain area but engages various interconnected networks

    Brain-computer interface technology and neuroelectrical imaging to improve motor recovery after stroke

    Get PDF
    Stroke is defined as a focal lesion in the brain caused by acute ischemia or hemorrhage. The events that characterize acute stroke as well as the spontaneous recovery process occurring in the subacute phase, demonstrate that the focal damage affects remote interconnected areas. On the other hand, interconnected areas largely contribute to reorganization of the central nervous system (CNS) along the recovery process (plasticity) throughout compensatory or restorative mechanisms which can also lead to unwanted effects (maladaptive plasticity). Such post-stroke brain reorganization occurring spontaneously or within a rehabilitation program, is the object of wide literature in the fields of neuroimaging and neurophysiology. Brain-Computer Interfaces (BCIs) allow recognition, monitoring and reinforcement of specific brain activities as recorded eg. via electroencephalogram (EEG) and use such brain activity to control external devices via a computer. Sensorimotor rhythm (SMR) based BCIs exploit the modulation occurring in the EEG in response to motor imagery (MI) tasks: the subject is asked to perform MI of eg. left or right hand in order to control a cursor on a screen. In the context of post-stroke motor rehabilitation, such recruitment of brain activity within the motor system through MI can be used to harness brain reorganization towards a better functional outcome. Since 2009 my research activity has been focused mainly on BCI applications for upper limb motor rehabilitation after stroke within national (Ministry of Health) and international (EU) projects. I conducted (or participated to) several basic and clinical studies involving both healthy subjects and stroke patients and employing a combination of neurophysiological techniques (EEG, transcranial magnetic stimulation – TMS) and BCI technology (De Vico Fallani et al., 2013; Kaiser et al., 2012; Morone et al., 2015; Pichiorri et al., 2011). Such studies culminated in a randomized controlled trial (RCT) conducted on subacute stroke patients in which we demonstrated that a one-month training with a BCI system, which was specifically designed to support upper limb rehabilitation after stroke, significantly improved functional outcome (upper limb motor function) in the target population. Moreover, we observed changes in brain activity and connectivity (from high-density EEG recordings) occurring in motor related frequency ranges that significantly correlated to the functional outcome in the target group (Pichiorri et al., 2015). Following these promising results, my activity proceeded along two main pathways during the PhD course. On one hand, efforts were made ameliorate the prototypal BCI system used in (Pichiorri et al., 2015); the current system (called Promotœr) is an all-in-one BCI training station with several improvements in usability for both the patient and the therapist (it is easier to use, employs wireless EEG system with reduced number of electrodes) (Colamarino et al., 2017a,b). The Promotœr system is currently employed in add-on to standard rehabilitation therapy in patients admitted at Fondazione Santa Lucia. Preliminary results are available on chronic stroke patients, partially retracing those obtained in the subacute phase (Pichiorri et al., 2015) as well as explorative reports on patients with upper limb motor deficit of central origin other than stroke (eg. spinal cord injury at the cervical level). In the last year, I submitted research projects related to the Promotœr system to private and public institutions. These projects foresee i) the addition of a proprioceptive feedback to the current visual one by means of Functional Electrical Stimulation (FES) ii) online evaluation of residual voluntary movement as recorded via electromyography (EMG), and iii) improvements in the BCI control features to integrate concepts derived from recent advancements in brain connectivity. On these themes, I recently obtained a grant from a private Swedish foundation. On the other hand, I conducted further analyses of data collected in the RCT (Pichiorri et al., 2015) to identify possible neurophysiological markers of good motor recovery. Specifically, I focused on interhemispheric connectivity (EEG derived) and its correlation with the integrity of the corticospinal tract (as assessed by TMS) and upper limb function (measured with clinical scales) in subacute stroke patients. The results of these analyses were recently published on an international peer-reviewed journal (Pichiorri et al., 2018). In the first chapter of this thesis, I will provide an updated overview on BCI application in neurorehabilitation (according to the current state-of-the-art). The content of this chapter is part of a wider book chapter, currently in press in Handbook of Clinical Neurology (Pichiorri and Mattia, in press). In the second chapter, I will report on the status of BCI applications for motor rehabilitation of the upper limb according to the approach I developed along my research activity, including ongoing projects and prliminary findings. In the third chapter I will present the results of a neurophysiological study on subacute stroke patients, exploring EEG derived interhemispheric connectivity as a possible neurophysiological correlate of corticospinal tract integrity and functional impairment of the upper limb. Overall this work aims to outline the current and potential role of BCI technology and EEG based neuroimaging in post-stroke rehabilitation mainly in relation to upper limb motor function, nonetheless touching upon possible different applications and contexts in neighboring research fields
    • …
    corecore