330 research outputs found

    Complexity Measures for Normal and Epileptic EEG Signals using ApEn, SampEn and SEN

    Get PDF
    There are numerous applications of EEG signal processing such as monitoring alertness, coma, and brain death, controlling an aesthesia, investigating epilepsy and locating seizure origin, testing epilepsy drug effects, monitoring the brain development, and investigating mental disorders; where data size is too long and requires long time to observe the data by clinician or neurologist. EEG signal processing techniques can be used effectively in such applications. The configuration of the signal waveform may contain valuable and useful information about the different state of the brain since biological signal is highly random in both time and frequency domain. Thus computerized analysis is necessary. Being a non-stationary signal, suitable analysis is essential for EEG to differentiate the normal EEG and epileptic seizures. The importance of entropy based features to recognize the normal EEGs, and ictal as well as interictal epileptic seizures. Three features, such as, Approximate entropy, Sample entropy, and Spectral entropy are used to take out the quantitative entropy features from the given EEG time series data of various time frames of 0.88s, and 1s .Average value of entropies for epileptic time series is less than non epileptic time series

    A machine learning system for automated whole-brain seizure detection

    Get PDF
    Epilepsy is a chronic neurological condition that affects approximately 70 million people worldwide. Characterised by sudden bursts of excess electricity in the brain, manifesting as seizures, epilepsy is still not well understood when compared with other neurological disorders. Seizures often happen unexpectedly and attempting to predict them has been a research topic for the last 30 years. Electroencephalograms have been integral to these studies, as the recordings that they produce can capture the brain’s electrical signals. The diagnosis of epilepsy is usually made by a neurologist, but can be difficult to make in the early stages. Supporting para-clinical evidence obtained from magnetic resonance imaging and electroencephalography may enable clinicians to make a diagnosis of epilepsy and instigate treatment earlier. However, electroencephalogram capture and interpretation is time consuming and can be expensive due to the need for trained specialists to perform the interpretation. Automated detection of correlates of seizure activity generalised across different regions of the brain and across multiple subjects may be a solution. This paper explores this idea further and presents a supervised machine learning approach that classifies seizure and non-seizure records using an open dataset containing 342 records (171 seizures and 171 non-seizures). Our approach posits a new method for generalising seizure detection across different subjects without prior knowledge about the focal point of seizures. Our results show an improvement on existing studies with 88% for sensitivity, 88% for specificity and 93% for the area under the curve, with a 12% global error, using the k-NN classifier

    Real-Time Localization of Epileptogenic Foci EEG Signals: An FPGA-Based Implementation

    Get PDF
    The epileptogenic focus is a brain area that may be surgically removed to control of epileptic seizures. Locating it is an essential and crucial step prior to the surgical treatment. However, given the difficulty of determining the localization of this brain region responsible of the initial seizure discharge, many works have proposed machine learning methods for the automatic classification of focal and non-focal electroencephalographic (EEG) signals. These works use automatic classification as an analysis tool for helping neurosurgeons to identify focal areas off-line, out of surgery, during the processing of the huge amount of information collected during several days of patient monitoring. In turn, this paper proposes an automatic classification procedure capable of assisting neurosurgeons online, during the resective epilepsy surgery, to refine the localization of the epileptogenic area to be resected, if they have doubts. This goal requires a real-time implementation with as low a computational cost as possible. For that reason, this work proposes both a feature set and a classifier model that minimizes the computational load while preserving the classification accuracy at 95.5%, a level similar to previous works. In addition, the classification procedure has been implemented on a FPGA device to determine its resource needs and throughput. Thus, it can be concluded that such a device can embed the whole classification process, from accepting raw signals to the delivery of the classification results in a cost-effective Xilinx Spartan-6 FPGA device. This real-time implementation begins providing results after a 5 s latency, and later, can deliver floating-point classification results at 3.5 Hz rate, using overlapped time-windows

    A Novel Method for Epileptic Seizure Detection Using Coupled Hidden Markov Models

    Full text link
    We propose a novel Coupled Hidden Markov Model to detect epileptic seizures in multichannel electroencephalography (EEG) data. Our model defines a network of seizure propagation paths to capture both the temporal and spatial evolution of epileptic activity. To address the intractability introduced by the coupled interactions, we derive a variational inference procedure to efficiently infer the seizure evolution from spectral patterns in the EEG data. We validate our model on EEG aquired under clinical conditions in the Epilepsy Monitoring Unit of the Johns Hopkins Hospital. Using 5-fold cross validation, we demonstrate that our model outperforms three baseline approaches which rely on a classical detection framework. Our model also demonstrates the potential to localize seizure onset zones in focal epilepsy.Comment: To appear in MICCAI 2018 Proceeding

    Quantitative analysis by renormalized entropy of invasive electroencephalograph recordings in focal epilepsy

    Get PDF
    Invasive electroencephalograph (EEG) recordings of ten patients suffering from focal epilepsy were analyzed using the method of renormalized entropy. Introduced as a complexity measure for the different regimes of a dynamical system, the feature was tested here for its spatio-temporal behavior in epileptic seizures. In all patients a decrease of renormalized entropy within the ictal phase of seizure was found. Furthermore, the strength of this decrease is monotonically related to the distance of the recording location to the focus. The results suggest that the method of renormalized entropy is a useful procedure for clinical applications like seizure detection and localization of epileptic foci.Comment: 10 pages, 5 figure

    Detection of Epileptic Seizures on EEG Signals Using ANFIS Classifier, Autoencoders and Fuzzy Entropies

    Get PDF
    Epileptic seizures are one of the most crucial neurological disorders, and their early diagnosis will help the clinicians to provide accurate treatment for the patients. The electroencephalogram (EEG) signals are widely used for epileptic seizures detection, which provides specialists with substantial information about the functioning of the brain. In this paper, a novel diagnostic procedure using fuzzy theory and deep learning techniques is introduced. The proposed method is evaluated on the Bonn University dataset with six classification combinations and also on the Freiburg dataset. The tunable- Q wavelet transform (TQWT) is employed to decompose the EEG signals into different sub-bands. In the feature extraction step, 13 different fuzzy entropies are calculated from different sub-bands of TQWT, and their computational complexities are calculated to help researchers choose the best set for various tasks. In the following, an autoencoder (AE) with six layers is employed for dimensionality reduction. Finally, the standard adaptive neuro-fuzzy inference system (ANFIS), and also its variants with grasshopper optimization algorithm (ANFIS-GOA), particle swarm optimization (ANFIS-PSO), and breeding swarm optimization (ANFIS-BS) methods are used for classification. Using our proposed method, ANFIS-BS method has obtained an accuracy of 99.7
    • …
    corecore