2,907 research outputs found

    Classification of Familiarity Based on Cross-Correlation Features Between EEG and Music

    Get PDF
    An approach to recognize the familiarity of a listener with music using both the electroencephalogram (EEG) signals and the music signal is proposed in this paper. Eight participants listened to melodies produced by piano sounds as simple natural stimuli. We classified the familiarity of each participant using cross-correlation values between EEG and the envelope of the music signal as features of the support vector machine (SVM) or neural network used. Here, we report that the maximum classification accuracy was 100% obtained by the SVM. These results suggest that the familiarity of music can be classified by cross-correlation values. The proposed approach can be used to recognize high-level brain states such as familiarity, preference, and emotion

    Classifying music perception and imagination using EEG

    Get PDF
    This study explored whether we could accurately classify perceived and imagined musical stimuli from EEG data. Successful EEG-based classification of what an individual is imagining could pave the way for novel communication techniques, such as brain-computer interfaces. We recorded EEG with a 64-channel BioSemi system while participants heard or imagined different musical stimuli. Using principal components analysis, we identified components common to both the perception and imagination conditions however, the time courses of the components did not allow for stimuli classification. We then applied deep learning techniques using a convolutional neural network. This technique enabled us to classify perception of music with a statistically significant accuracy of 28.7%, but we were unable to classify imagination of music (accuracy = 7.41%). Future studies should aim to determine which characteristics of music are driving perception classification rates, and to capitalize on these characteristics to raise imagination classification rates

    Brain Computer Interfaces and Emotional Involvement: Theory, Research, and Applications

    Get PDF
    This reprint is dedicated to the study of brain activity related to emotional and attentional involvement as measured by Brain–computer interface (BCI) systems designed for different purposes. A BCI system can translate brain signals (e.g., electric or hemodynamic brain activity indicators) into a command to execute an action in the BCI application (e.g., a wheelchair, the cursor on the screen, a spelling device or a game). These tools have the advantage of having real-time access to the ongoing brain activity of the individual, which can provide insight into the user’s emotional and attentional states by training a classification algorithm to recognize mental states. The success of BCI systems in contemporary neuroscientific research relies on the fact that they allow one to “think outside the lab”. The integration of technological solutions, artificial intelligence and cognitive science allowed and will allow researchers to envision more and more applications for the future. The clinical and everyday uses are described with the aim to invite readers to open their minds to imagine potential further developments

    EmoEEG - recognising people's emotions using electroencephalography

    Get PDF
    Tese de mestrado integrado em Engenharia Biomédica e Biofísica (Sinais e Imagens Médicas), Universidade de Lisboa, Faculdade de Ciências, 2020As emoções desempenham um papel fulcral na vida humana, estando envolvidas numa extensa variedade de processos cognitivos, tais como tomada de decisão, perceção, interações sociais e inteligência. As interfaces cérebro-máquina (ICM) são sistemas que convertem os padrões de atividade cerebral de um utilizador em mensagens ou comandos para uma determinada aplicação. Os usos mais comuns desta tecnologia permitem que pessoas com deficiência motora controlem braços mecânicos, cadeiras de rodas ou escrevam. Contudo, também é possível utilizar tecnologias ICM para gerar output sem qualquer controle voluntário. A identificação de estados emocionais é um exemplo desse tipo de feedback. Por sua vez, esta tecnologia pode ter aplicações clínicas tais como a identificação e monitorização de patologias psicológicas, ou aplicações multimédia que facilitem o acesso a músicas ou filmes de acordo com o seu conteúdo afetivo. O interesse crescente em estabelecer interações emocionais entre máquinas e pessoas, levou à necessidade de encontrar métodos fidedignos de reconhecimento emocional automático. Os autorrelatos podem não ser confiáveis devido à natureza subjetiva das próprias emoções, mas também porque os participantes podem responder de acordo com o que acreditam que os outros responderiam. A fala emocional é uma maneira eficaz de deduzir o estado emocional de uma pessoa, pois muitas características da fala são independentes da semântica ou da cultura. No entanto, a precisão ainda é insuficiente quando comparada com outros métodos, como a análise de expressões faciais ou sinais fisiológicos. Embora o primeiro já tenha sido usado para identificar emoções com sucesso, ele apresenta desvantagens, tais como o fato de muitas expressões faciais serem "forçadas" e o fato de que as leituras só são possíveis quando o rosto do sujeito está dentro de um ângulo muito específico em relação à câmara. Por estes motivos, a recolha de sinais fisiológicos tem sido o método preferencial para o reconhecimento de emoções. O uso do EEG (eletroencefalograma) permite-nos monitorizar as emoções sentidas sob a forma de impulsos elétricos provenientes do cérebro, permitindo assim obter uma ICM para o reconhecimento afetivo. O principal objetivo deste trabalho foi estudar a combinação de diferentes elementos para identificar estados afetivos, estimando valores de valência e ativação usando sinais de EEG. A análise realizada consistiu na criação de vários modelos de regressão para avaliar como diferentes elementos afetam a precisão na estimativa de valência e ativação. Os referidos elementos foram os métodos de aprendizagem automática, o género do indivíduo, o conceito de assimetria cerebral, os canais de elétrodos utilizados, os algoritmos de extração de características e as bandas de frequências analisadas. Com esta análise foi possível criarmos o melhor modelo possível, com a combinação de elementos que maximiza a sua precisão. Para alcançar os nossos objetivos, recorremos a duas bases de dados (AMIGOS e DEAP) contendo sinais de EEG obtidos durante experiências de desencadeamento emocional, juntamente com a autoavaliação realizada pelos respetivos participantes. Nestas experiências, os participantes visionaram excertos de vídeos de conteúdo afetivo, de modo a despoletar emoções sobre eles, e depois classificaram-nas atribuindo o nível de valência e ativação experienciado. Os sinais EEG obtidos foram divididos em epochs de 4s e de seguida procedeu-se à extração de características através de diferentes algoritmos: o primeiro, segundo e terceiro parâmetros de Hjorth; entropia espectral; energia e entropia de wavelets; energia e entropia de FMI (funções de modos empíricos) obtidas através da transformada de Hilbert-Huang. Estes métodos de processamento de sinal foram escolhidos por já terem gerado resultados bons noutros trabalhos relacionados. Todos estes métodos foram aplicados aos sinais EEG dentro das bandas de frequência alfa, beta e gama, que também produziram bons resultados de acordo com trabalhos já efetuados. Após a extração de características dos sinais EEG, procedeu-se à criação de diversos modelos de estimação da valência e ativação usando as autoavaliações dos participantes como “verdade fundamental”. O primeiro conjunto de modelos criados serviu para aferir quais os melhores métodos de aprendizagem automática a utilizar para os testes vindouros. Após escolher os dois melhores, tentámos verificar as diferenças no processamento emocional entre os sexos, realizando a estimativa em homens e mulheres separadamente. O conjunto de modelos criados a seguir visou testar o conceito da assimetria cerebral, que afirma que a valência emocional está relacionada com diferenças na atividade fisiológica entre os dois hemisférios cerebrais. Para este teste específico, foram consideradas a assimetria diferencial e racional segundo pares de elétrodos homólogos. Depois disso, foram criados modelos de estimação de valência e ativação considerando cada um dos elétrodos individualmente. Ou seja, os modelos seriam gerados com todos os métodos de extração de características, mas com os dados obtidos de um elétrodo apenas. Depois foram criados modelos que visassem comparar cada um dos algoritmos de extração de características utilizados. Os modelos gerados nesta fase incluíram os dados obtidos de todos os elétrodos, já que anteriormente se verificou que não haviam elétrodos significativamente melhores que outros. Por fim, procedeu-se à criação dos modelos com a melhor combinação de elementos possível, otimizaram-se os parâmetros dos mesmos, e procurámos também aferir a sua validação. Realizámos também um processo de classificação emocional associando cada par estimado de valores de valência e ativação ao quadrante correspondente no modelo circumplexo de afeto. Este último passo foi necessário para conseguirmos comparar o nosso trabalho com as soluções existentes, pois a grande maioria delas apenas identificam o quadrante emocional, não estimando valores para a valência e ativação. Em suma, os melhores métodos de aprendizagem automática foram RF (random forest) e KNN (k-nearest neighbours), embora a combinação dos melhores métodos de extração de características fosse diferente para os dois. KNN apresentava melhor precisão considerando todos os métodos de extração menos a entropia espectral, enquanto que RF foi mais preciso considerando apenas o primeiro parâmetro de Hjorth e a energia de wavelets. Os valores dos coeficientes de Pearson obtidos para os melhores modelos otimizados ficaram compreendidos entre 0,8 e 0,9 (sendo 1 o valor máximo). Não foram registados melhoramentos nos resultados considerando cada género individualmente, pelo que os modelos finais foram criados usando os dados de todos os participantes. É possível que a diminuição da precisão dos modelos criados para cada género seja resultado da menor quantidade de dados envolvidos no processo de treino. O conceito de assimetria cerebral só foi útil nos modelos criados usando a base de dados DEAP, especialmente para a estimação de valência usando as características extraídas segundo a banda alfa. Em geral, as nossas abordagens mostraram-se a par ou mesmo superiores a outros trabalhos, obtendo-se valores de acurácia de 86.5% para o melhor modelo de classificação gerado com a base de dados AMIGOS e 86.6% usando a base de dados DEAP.Emotion recognition is a field within affective computing that is gaining increasing relevance and strives to predict an emotional state using physiological signals. Understanding how these biological factors are expressed according to one’s emotions can enhance the humancomputer interaction (HCI). This knowledge, can then be used for clinical applications such as the identification and monitoring of psychiatric disorders. It can also be used to provide better access to multimedia content, by assigning affective tags to videos or music. The goal of this work was to create several models for estimating values of valence and arousal, using features extracted from EEG signals. The different models created were meant to compare how various elements affected the accuracy of the model created. These elements were the machine learning techniques, the gender of the individual, the brain asymmetry concept, the electrode channels, the feature extraction methods and the frequency of the brain waves analysed. The final models contained the best combination of these elements and achieved PCC values over 0.80. As a way to compare our work with previous approaches, we also implemented a classification procedure to find the correspondent quadrant in the valence and arousal space according to the circumplex model of affect. The best accuracies achieved were over 86%, which was on par or even superior to some of the works already done

    Brain Music : Sistema generativo para la creación de música simbólica a partir de respuestas neuronales afectivas

    Get PDF
    gráficas, tablasEsta tesis de maestría presenta una metodología de aprendizaje profundo multimodal innovadora que fusiona un modelo de clasificación de emociones con un generador musical, con el propósito de crear música a partir de señales de electroencefalografía, profundizando así en la interconexión entre emociones y música. Los resultados alcanzan tres objetivos específicos: Primero, ya que el rendimiento de los sistemas interfaz cerebro-computadora varía considerablemente entre diferentes sujetos, se introduce un enfoque basado en la transferencia de conocimiento entre sujetos para mejorar el rendimiento de individuos con dificultades en sistemas de interfaz cerebro-computadora basados en el paradigma de imaginación motora. Este enfoque combina datos de EEG etiquetados con datos estructurados, como cuestionarios psicológicos, mediante un método de "Kernel Matching CKA". Utilizamos una red neuronal profunda (Deep&Wide) para la clasificación de la imaginación motora. Los resultados destacan su potencial para mejorar las habilidades motoras en interfaces cerebro-computadora. Segundo, proponemos una técnica innovadora llamada "Labeled Correlation Alignment"(LCA) para sonificar respuestas neurales a estímulos representados en datos no estructurados, como música afectiva. Esto genera características musicales basadas en la actividad cerebral inducida por las emociones. LCA aborda la variabilidad entre sujetos y dentro de sujetos mediante el análisis de correlación, lo que permite la creación de envolventes acústicos y la distinción entre diferente información sonora. Esto convierte a LCA en una herramienta prometedora para interpretar la actividad neuronal y su reacción a estímulos auditivos. Finalmente, en otro capítulo, desarrollamos una metodología de aprendizaje profundo de extremo a extremo para generar contenido musical MIDI (datos simbólicos) a partir de señales de actividad cerebral inducidas por música con etiquetas afectivas. Esta metodología abarca el preprocesamiento de datos, el entrenamiento de modelos de extracción de características y un proceso de emparejamiento de características mediante Deep Centered Kernel Alignment, lo que permite la generación de música a partir de señales EEG. En conjunto, estos logros representan avances significativos en la comprensión de la relación entre emociones y música, así como en la aplicación de la inteligencia artificial en la generación musical a partir de señales cerebrales. Ofrecen nuevas perspectivas y herramientas para la creación musical y la investigación en neurociencia emocional. Para llevar a cabo nuestros experimentos, utilizamos bases de datos públicas como GigaScience, Affective Music Listening y Deap Dataset (Texto tomado de la fuente)This master’s thesis presents an innovative multimodal deep learning methodology that combines an emotion classification model with a music generator, aimed at creating music from electroencephalography (EEG) signals, thus delving into the interplay between emotions and music. The results achieve three specific objectives: First, since the performance of brain-computer interface systems varies significantly among different subjects, an approach based on knowledge transfer among subjects is introduced to enhance the performance of individuals facing challenges in motor imagery-based brain-computer interface systems. This approach combines labeled EEG data with structured information, such as psychological questionnaires, through a "Kernel Matching CKA"method. We employ a deep neural network (Deep&Wide) for motor imagery classification. The results underscore its potential to enhance motor skills in brain-computer interfaces. Second, we propose an innovative technique called "Labeled Correlation Alignment"(LCA) to sonify neural responses to stimuli represented in unstructured data, such as affective music. This generates musical features based on emotion-induced brain activity. LCA addresses variability among subjects and within subjects through correlation analysis, enabling the creation of acoustic envelopes and the distinction of different sound information. This makes LCA a promising tool for interpreting neural activity and its response to auditory stimuli. Finally, in another chapter, we develop an end-to-end deep learning methodology for generating MIDI music content (symbolic data) from EEG signals induced by affectively labeled music. This methodology encompasses data preprocessing, feature extraction model training, and a feature matching process using Deep Centered Kernel Alignment, enabling music generation from EEG signals. Together, these achievements represent significant advances in understanding the relationship between emotions and music, as well as in the application of artificial intelligence in musical generation from brain signals. They offer new perspectives and tools for musical creation and research in emotional neuroscience. To conduct our experiments, we utilized public databases such as GigaScience, Affective Music Listening and Deap DatasetMaestríaMagíster en Ingeniería - Automatización IndustrialInvestigación en Aprendizaje Profundo y señales BiológicasEléctrica, Electrónica, Automatización Y Telecomunicaciones.Sede Manizale

    Evaluation of Features in Detection of Dislike Responses to Audio–Visual Stimuli from EEG Signals

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).There is a strong correlation between the like/dislike responses to audio–visual stimuli and the emotional arousal and valence reactions of a person. In the present work, our attention is focused on the automated detection of dislike responses based on EEG activity when music videos are used as audio–visual stimuli. Specifically, we investigate the discriminative capacity of the Logarithmic Energy (LogE), Linear Frequency Cepstral Coefficients (LFCC), Power Spectral Density (PSD) and Discrete Wavelet Transform (DWT)-based EEG features, computed with and without segmentation of the EEG signal, on the dislike detection task. We carried out a comparative evaluation with eighteen modifications of the above-mentioned EEG features that cover different frequency bands and use different energy decomposition methods and spectral resolutions. For that purpose, we made use of Naïve Bayes classifier (NB), Classification and regression trees (CART), k-Nearest Neighbors (kNN) classifier, and support vector machines (SVM) classifier with a radial basis function (RBF) kernel trained with the Sequential Minimal Optimization (SMO) method. The experimental evaluation was performed on the well-known and widely used DEAP dataset. A classification accuracy of up to 98.6% was observed for the best performing combination of pre-processing, EEG features and classifier. These results support that the automated detection of like/dislike reactions based on EEG activity is feasible in a personalized setup. This opens opportunities for the incorporation of such functionality in entertainment, healthcare and security applications.Peer reviewedFinal Published versio
    corecore