4,758 research outputs found

    Historical Document Digitization through Layout Analysis and Deep Content Classification

    Get PDF
    Document layout segmentation and recognition is an important task in the creation of digitized documents collections, especially when dealing with historical documents. This paper presents an hybrid approach to layout segmentation as well as a strategy to classify document regions, which is applied to the process of digitization of an historical encyclopedia. Our layout analysis method merges a classic top-down approach and a bottom-up classification process based on local geometrical features, while regions are classified by means of features extracted from a Convolutional Neural Network merged in a Random Forest classifier. Experiments are conducted on the first volume of the ``Enciclopedia Treccani'', a large dataset containing 999 manually annotated pages from the historical Italian encyclopedia

    Classification software technique assessment

    Get PDF
    A catalog of software options is presented for the use of local user communities to obtain software for analyzing remotely sensed multispectral imagery. The resources required to utilize a particular software program are described. Descriptions of how a particular program analyzes data and the performance of that program for an application and data set provided by the user are shown. An effort is made to establish a statistical performance base for various software programs with regard to different data sets and analysis applications, to determine the status of the state-of-the-art

    Stochastic Filter Groups for Multi-Task CNNs: Learning Specialist and Generalist Convolution Kernels

    Get PDF
    The performance of multi-task learning in Convolutional Neural Networks (CNNs) hinges on the design of feature sharing between tasks within the architecture. The number of possible sharing patterns are combinatorial in the depth of the network and the number of tasks, and thus hand-crafting an architecture, purely based on the human intuitions of task relationships can be time-consuming and suboptimal. In this paper, we present a probabilistic approach to learning task-specific and shared representations in CNNs for multi-task learning. Specifically, we propose "stochastic filter groups'' (SFG), a mechanism to assign convolution kernels in each layer to "specialist'' or "generalist'' groups, which are specific to or shared across different tasks, respectively. The SFG modules determine the connectivity between layers and the structures of task-specific and shared representations in the network. We employ variational inference to learn the posterior distribution over the possible grouping of kernels and network parameters. Experiments demonstrate that the proposed method generalises across multiple tasks and shows improved performance over baseline methods.Comment: Accepted for oral presentation at ICCV 201

    Vehicle license plate detection and recognition

    Get PDF
    "December 2013.""A Thesis presented to the Faculty of the Graduate School at the University of Missouri In Partial Fulfillment of the Requirements for the Degree Master of Science."Thesis supervisor: Dr. Zhihai He.In this work, we develop a license plate detection method using a SVM (Support Vector Machine) classifier with HOG (Histogram of Oriented Gradients) features. The system performs window searching at different scales and analyzes the HOG feature using a SVM and locates their bounding boxes using a Mean Shift method. Edge information is used to accelerate the time consuming scanning process. Our license plate detection results show that this method is relatively insensitive to variations in illumination, license plate patterns, camera perspective and background variations. We tested our method on 200 real life images, captured on Chinese highways under different weather conditions and lighting conditions. And we achieved a detection rate of 100%. After detecting license plates, alignment is then performed on the plate candidates. Conceptually, this alignment method searches neighbors of the bounding box detected, and finds the optimum edge position where the outside regions are very different from the inside regions of the license plate, from color's perspective in RGB space. This method accurately aligns the bounding box to the edges of the plate so that the subsequent license plate segmentation and recognition can be performed accurately and reliably. The system performs license plate segmentation using global alignment on the binary license plate. A global model depending on the layout of license plates is proposed to segment the plates. This model searches for the optimum position where the characters are all segmented but not chopped into pieces. At last, the characters are recognized by another SVM classifier, with a feature size of 576, including raw features, vertical and horizontal scanning features. Our character recognition results show that 99% of the digits are successfully recognized, while the letters achieve an recognition rate of 95%. The license plate recognition system was then incorporated into an embedded system for parallel computing. Several TS7250 and an auxiliary board are used to simulIncludes bibliographical references (pages 67-73)

    Representing 3D shape in sparse range images for urban object classification

    Get PDF
    This thesis develops techniques for interpreting 3D range images acquired in outdoor environments at a low resolution. It focuses on the task of robustly capturing the shapes that comprise objects, in order to classify them. With the recent development of 3D sensors such as the Velodyne, it is now possible to capture range images at video frame rates, allowing mobile robots to observe dynamic scenes in 3D. To classify objects in these scenes, features are extracted from the data, which allows different regions to be matched. However, range images acquired at this speed are of low resolution, and there are often significant changes in sensor viewpoint and occlusion. In this context, existing methods for feature extraction do not perform well. This thesis contributes algorithms for the robust abstraction from 3D points to object classes. Efficient region-of-interest and surface normal extraction are evaluated, resulting in a keypoint algorithm that provides stable orientations. These build towards a novel feature, called the ‘line image,’ that is designed to consistently capture local shape, regardless of sensor viewpoint. It does this by explicitly reasoning about the difference between known empty space, and space that has not been measured due to occlusion or sparse sensing. A dataset of urban objects scanned with a Velodyne was collected and hand labelled, in order to compare this feature with several others on the task of classification. First, a simple k-nearest neighbours approach was used, where the line image showed improvements. Second, more complex classifiers were applied, requiring the features to be clustered. The clusters were used in topic modelling, allowing specific sub-parts of objects to be learnt across multiple scales, improving accuracy by 10%. This work is applicable to any range image data. In general, it demonstrates the advantages in using the inherent density and occupancy information in a range image during 3D point cloud processing
    • …
    corecore