406 research outputs found

    Classification of crystallization outcomes using deep convolutional neural networks

    Get PDF
    The Machine Recognition of Crystallization Outcomes (MARCO) initiative has assembled roughly half a million annotated images of macromolecular crystallization experiments from various sources and setups. Here, state-of-the-art machine learning algorithms are trained and tested on different parts of this data set. We find that more than 94% of the test images can be correctly labeled, irrespective of their experimental origin. Because crystal recognition is key to high-density screening and the systematic analysis of crystallization experiments, this approach opens the door to both industrial and fundamental research applications

    Artificial Intelligence in Materials Science: Applications of Machine Learning to Extraction of Physically Meaningful Information from Atomic Resolution Microscopy Imaging

    Get PDF
    Materials science is the cornerstone for technological development of the modern world that has been largely shaped by the advances in fabrication of semiconductor materials and devices. However, the Moore’s Law is expected to stop by 2025 due to reaching the limits of traditional transistor scaling. However, the classical approach has shown to be unable to keep up with the needs of materials manufacturing, requiring more than 20 years to move a material from discovery to market. To adapt materials fabrication to the needs of the 21st century, it is necessary to develop methods for much faster processing of experimental data and connecting the results to theory, with feedback flow in both directions. However, state-of-the-art analysis remains selective and manual, prone to human error and unable to handle large quantities of data generated by modern equipment. Recent advances in scanning transmission electron and scanning tunneling microscopies have allowed imaging and manipulation of materials on the atomic level, and these capabilities require development of automated, robust, reproducible methods.Artificial intelligence and machine learning have dealt with similar issues in applications to image and speech recognition, autonomous vehicles, and other projects that are beginning to change the world around us. However, materials science faces significant challenges preventing direct application of the such models without taking physical constraints and domain expertise into account.Atomic resolution imaging can generate data that can lead to better understanding of materials and their properties through using artificial intelligence methods. Machine learning, in particular combinations of deep learning and probabilistic modeling, can learn to recognize physical features in imaging, making this process automated and speeding up characterization. By incorporating the knowledge from theory and simulations with such frameworks, it is possible to create the foundation for the automated atomic scale manufacturing

    Not getting in too deep : A practical deep learning approach to routine crystallisation image classification

    Get PDF
    Using a relatively small training set of ~16 thousand images from macrmolecular crystallisation experiments, we compare classification results obtained with four of the most widely- used convolutional deep-learning network architectures that can be implemented without the need for extensive computational resources. We show that the classifiers have different strengths that can be combined to provide an ensemble classifier achieving a classification accuracy comparable to that obtained by a large consortium initiative. We use eight classes to effectively rank the experimental outcomes, thereby providing detailed information that can be used with routine crystallography experiments to automatically identify crystal forma- tion for drug discovery and pave the way for further exploration of the relationship between crystal formation and crystallisation conditions

    From Laser Speckle to Particle Size Distribution in drying powders: A Physics-Enhanced AutoCorrelation-based Estimator (PEACE)

    Full text link
    Extracting quantitative information about highly scattering surfaces from an imaging system is challenging because the phase of the scattered light undergoes multiple folds upon propagation, resulting in complex speckle patterns. One specific application is the drying of wet powders in the pharmaceutical industry, where quantifying the particle size distribution (PSD) is of particular interest. A non-invasive and real-time monitoring probe in the drying process is required, but there is no suitable candidate for this purpose. In this report, we develop a theoretical relationship from the PSD to the speckle image and describe a physics-enhanced autocorrelation-based estimator (PEACE) machine learning algorithm for speckle analysis to measure the PSD of a powder surface. This method solves both the forward and inverse problems together and enjoys increased interpretability, since the machine learning approximator is regularized by the physical law

    Deploying Big Data To Crack The Genotype To Phenotype Code

    Get PDF
    Mechanistically connecting genotypes to phenotypes is a longstanding and central mission of biology. Deciphering these connections will unite questions and datasets across all scales from molecules to ecosystems. Although high-throughput sequencing has provided a rich platform on which to launch this effort, tools for deciphering mechanisms further along the genome to phenome pipeline remain limited. Machine learning approaches and other emerging computational tools hold the promise of augmenting human efforts to overcome these obstacles. This vision paper is the result of a Reintegrating Biology Workshop, bringing together the perspectives of integrative and comparative biologists to survey challenges and opportunities in cracking the genotype to phenotype code and thereby generating predictive frameworks across biological scales. Key recommendations include: promoting the development of minimum “best practices” for the experimental design and collection of data; fostering sustained and long-term data repositories; promoting programs that recruit, train, and retain a diversity of talent and providing funding to effectively support these highly cross-disciplinary efforts. We follow this discussion by highlighting a few specific transformative research opportunities that will be advanced by these efforts
    • …
    corecore