7,132 research outputs found

    Attention, concentration, and distraction measure using EEG and eye tracking in virtual reality

    Full text link
    Attention is important in learning, Attention-deficit/hyperactivity disorder, Driving, and many other fields. Hence, intelligent tutoring systems, Attention-deficit/hyperactivity disorder diagnosis systems, and distraction detection of driver systems should be able to correctly monitor the attention levels of individuals in real time in order to estimate their attentional state. We study the feasibility of detecting distraction and concentration by monitoring participants' attention levels while they complete cognitive tasks using Electroencephalography and Eye Tracking in a virtual reality environment. Furthermore, we investigate the possibility of improving the concentration of participants using relaxation in virtual reality. We developed an indicator that estimates levels of attention with a real value using EEG data. The participant-independent indicator based on EEG data we used to assess the concentration levels of participants correctly predicts the concentration state with an accuracy (F1 = 73%). Furthermore, the participant-independent distraction model based on Eye Tracking data correctly predicted the distraction state of participants with an accuracy (F1 = 89%) in a participant-independent validation setting.La concentration est importante dans l’apprentissage, Le trouble du dĂ©ficit de l’attention avec ou sans hyperactivitĂ©, la conduite automobile et dans de nombreux autres domaines. Par consĂ©quent, les systĂšmes de tutorat intelligents, les systĂšmes de diagnostic du trouble du dĂ©ficit de l’attention avec ou sans hyperactivitĂ© et les systĂšmes de dĂ©tection de la distraction au volant devraient ĂȘtre capables de surveiller correctement les niveaux d’attention des individus en temps rĂ©el afin de dĂ©duire correctement leur Ă©tat attentionnel. Nous Ă©tudions la faisabilitĂ© de la dĂ©tection de la distraction et de la concentration en surveillant les niveaux d’attention des participants pendant qu’ils effectuent des tĂąches cognitives en utilisant l’ÉlectroencĂ©phalographie et l’Eye Tracking dans un environnement de rĂ©alitĂ© virtuelle. En outre, nous Ă©tudions la possibilitĂ© d’amĂ©liorer la concentration des participants en utilisant la relaxation en rĂ©alitĂ© virtuelle. Nous avons mis au point un indicateur qui estime les niveaux d’attention avec une valeur rĂ©elle en utilisant les donnĂ©es EEG. L’indicateur indĂ©pendant du participant basĂ© sur les donnĂ©es EEG que nous avons utilisĂ© pour Ă©valuer les niveaux de concentration des participants prĂ©dit correctement l’état de concentration avec une prĂ©cision (F1 = 73%). De plus, le modĂšle de distraction indĂ©pendant des participants, basĂ© sur les donnĂ©es d’Eye Tracking, a correctement prĂ©dit l’état de distraction des participants avec une prĂ©cision (F1 = 89%) dans un cadre de validation indĂ©pendant des participants

    Emotions in context: examining pervasive affective sensing systems, applications, and analyses

    Get PDF
    Pervasive sensing has opened up new opportunities for measuring our feelings and understanding our behavior by monitoring our affective states while mobile. This review paper surveys pervasive affect sensing by examining and considering three major elements of affective pervasive systems, namely; “sensing”, “analysis”, and “application”. Sensing investigates the different sensing modalities that are used in existing real-time affective applications, Analysis explores different approaches to emotion recognition and visualization based on different types of collected data, and Application investigates different leading areas of affective applications. For each of the three aspects, the paper includes an extensive survey of the literature and finally outlines some of challenges and future research opportunities of affective sensing in the context of pervasive computing

    Machine Learning Models for Mental Stress Classification based on Multimodal Biosignal Input

    Get PDF
    Mental stress is a largely prevalent condition directly or indirectly responsible for almost half of all work-related diseases. Work-Related Stress is the second most impactful occupational health problem in Europe, behind musculoskeletal diseases. When mental health is adequately handled, a worker’s well-being, performance, and productivity can be considerably improved. This thesis presents machine learning models to classify mental stress experienced by computer users using physiological signals including heart rate, acquired using a smart- watch; respiration, derived from a smartphone’s acc placed on the chest; and trapezius electromyography, using proprietary electromyography sensors. Two interactive proto- cols were implemented to collect data from 12 individuals. Time and frequency domain features were extracted from the heart rate and electromyography signals, and statistical and temporal features were extracted from the derived respiration signal. Three algorithms: Support Vector Machine, Random Forest, and K-Nearest-Neighbor were employed for mental stress classification. Different input modalities were tested for the machine learning models: one for each physiological signal and a multimodal one, combining all of them. Random Forest obtained the best mean accuracy (98.5%) for the respiration model whereas K-Nearest-Neighbor attained higher mean accuracies for the heart rate (89.0%) left, right and total electromyography (98.9%, 99.2%, and 99.3%) models. KNN algorithm was also able to achieve 100% mean accuracy for the multimodal model. A possible future approach would be to validate these models in real-time.O stress mental Ă© uma condição amplamente prevalente direta ou indiretamente responsĂĄvel por quase metade de todas doenças relacionadas com trabalho. O stress expe- rienciado no trabalho Ă© o segundo problema de saĂșde ocupacional com maior impacto na Europa, depois das doenças mĂșsculo-esquelĂ©ticas. Quando a saĂșde mental Ă© adequada- mente cuidada, o bem-estar, o desempenho e a produtividade de um trabalhador podem ser consideravelmente melhorados. Esta tese apresenta modelos de aprendizagem automĂĄtica que classificam o stress mental experienciado por utilizadores de computadores recorrendo a sinais fisiolĂłgi- cos, incluindo a frequĂȘncia cardĂ­aca, adquirida pelo sensor de fotopletismografia de um smartwatch; a respiração, derivada de um acelerĂłmetro incorporado no smartphone po- sicionado no peito; e electromiografia de cada um dos mĂșsculos trapĂ©zios, utilizando sensores electromiogrĂĄficos proprietĂĄrios. Foram implementados dois protocolos inte- ractivos para recolha de dados de 12 indivĂ­duos. CaracterĂ­sticas do domĂ­nio temporal e de frequĂȘncia foram extraĂ­das dos sinais de frequĂȘncia cardĂ­aca e electromiografia, e caracterĂ­sticas estatĂ­sticas e temporais foram extraĂ­das do sinal respiratĂłrio. TrĂȘs algoritmos entitulados K-Nearest-Neighbor, Random Forest, e Support Vector Machine foram utilizados para a classificação do stress mental. Foram testadas diferentes modalidades de dados para os modelos de aprendizagem automĂĄtica: uma para cada sinal fisiolĂłgico e uma multimodal, combinando os trĂȘs. O Random Forest obteve a melhor precisĂŁo mĂ©dia (98,5%) para o modelo de respiração enquanto que o K-Nearest-Neighbor atingiu uma maior precisĂŁo mĂ©dia nos modelos de frequĂȘncia cardĂ­aca (89,0%) e electro- miografia esquerda, direita e total (98,9%, 99,2%, e 99,3%). O algoritmo KNN conseguiu ainda atingir uma precisĂŁo mĂ©dia de 100% para o modelo multimodal. Uma possĂ­vel abordagem futura seria efetuar uma validação destes modelos em tempo real
    • 

    corecore