2,251 research outputs found

    Detecting and classifying lesions in mammograms with Deep Learning

    Get PDF
    In the last two decades Computer Aided Diagnostics (CAD) systems were developed to help radiologists analyze screening mammograms. The benefits of current CAD technologies appear to be contradictory and they should be improved to be ultimately considered useful. Since 2012 deep convolutional neural networks (CNN) have been a tremendous success in image recognition, reaching human performance. These methods have greatly surpassed the traditional approaches, which are similar to currently used CAD solutions. Deep CNN-s have the potential to revolutionize medical image analysis. We propose a CAD system based on one of the most successful object detection frameworks, Faster R-CNN. The system detects and classifies malignant or benign lesions on a mammogram without any human intervention. The proposed method sets the state of the art classification performance on the public INbreast database, AUC = 0.95 . The approach described here has achieved the 2nd place in the Digital Mammography DREAM Challenge with AUC = 0.85 . When used as a detector, the system reaches high sensitivity with very few false positive marks per image on the INbreast dataset. Source code, the trained model and an OsiriX plugin are availaible online at https://github.com/riblidezso/frcnn_cad

    Pharmacokinetic Analysis of Gd-DTPA Enhancement in dynamic three-dimensional MRI of breast lesions

    Get PDF
    The purpose of this study was to demonstrate that dynamic MRI covering both breasts can provide sensitivity for tumor detection as well as specificity and sensitivity for differentiation of tumor malignancy. Three-dimensional gradient echo scans were used covering both breasts. Before Gd-DTPA bolus injection, two scans were obtained with different flip angles, and after injection, a dynamic series followed. Thirty-two patients were scanned according to this protocol. From these scans, in addition to enhancement, the value of T1 before injection was obtained. This was used to estimate the concentration of Gd-DTPA as well as the pharmacokinetic parameters governing its time course. Signal enhancement in three-dimensional dynamic scanning was shown to be a sensitive basis for detection of tumors. In our series, all but two mam-mographically suspicious lesions did enhance, and in three cases, additional enhancing lesions were found, two of which were in the contralateral breast. The parameter most suited for classification of breast lesions into benign or malignant was shown to be the pharmacokinetically defined permeability k31, which, for that test, gave a sensitivity of 92% and a specificity of 70%. Our three-dimensional dynamic MRI data are sensitive for detection of mammographically occult breast tumors and specific for classification of these as benign or malignant
    • …
    corecore