151 research outputs found

    A new deep convolutional neural network model for classifying breast cancer histopathological images and the hyperparameter optimisation of the proposed model

    Get PDF
    Deep learning algorithms have yielded remarkable results in medical diagnosis and image analysis, besides their contribution to improvements in a number of fields such as drug discovery, time-series modelling and optimisation methods. With regard to the analysis of histopathologic breast cancer images, the similarity of those images and the presence of healthy and tumourous tissues in different areas complicate the detection and classification of tumours on whole slide images. An accurate diagnosis in a short time is a need for full treatment in breast cancer. A successful classification on breast cancer histopathological images will overcome the burden on the pathologist and reduce the subjectivity of diagnosis. In this study, we propose a deep convolutional neural network model. The model uses various algorithms (i.e., stochastic gradient descent, Nesterov accelerated gradient, adaptive gradient, RMSprop, AdaDelta and Adam) to compute the initial weight of the network and update the model parameters for faster backpropagation learning. In order to train the model with less hardware in a short time, we used the parallel computing architecture with Cuda-enabled graphics processing unit. The results indicate that the deep convolutional neural network model is an effective classification model with a high performance up to 99.05% accuracy value. © 2020, Springer Science+Business Media, LLC, part of Springer Nature

    Assessment of algorithms for mitosis detection in breast cancer histopathology images

    Get PDF
    The proliferative activity of breast tumors, which is routinely estimated by counting of mitotic figures in hematoxylin and eosin stained histology sections, is considered to be one of the most important prognostic markers. However, mitosis counting is laborious, subjective and may suffer from low inter-observer agreement. With the wider acceptance of whole slide images in pathology labs, automatic image analysis has been proposed as a potential solution for these issues. In this paper, the results from the Assessment of Mitosis Detection Algorithms 2013 (AMIDA13) challenge are described. The challenge was based on a data set consisting of 12 training and 11 testing subjects, with more than one thousand annotated mitotic figures by multiple observers. Short descriptions and results from the evaluation of eleven methods are presented. The top performing method has an error rate that is comparable to the inter-observer agreement among pathologists

    RECENT CNN-BASED TECHNIQUES FOR BREAST CANCER HISTOLOGY IMAGE CLASSIFICATION

    Get PDF
    Histology images are extensively used by pathologists to assess abnormalities and detect malignancy in breast tissues. On the other hand, Convolutional Neural Networks (CNN) are by far, the privileged models for image classification and interpretation. Based on these two facts, we surveyed the recent CNN-based methods for breast cancer histology image analysis. The survey focuses on two major issues usually faced by CNN-based methods namely the design of an appropriate CNN architecture and the lack of a sufficient labelled dataset for training the model. Regarding the design of the CNN architecture, methods examining breast histology images adopt three main approaches: Designing manually from scratch the CNN architecture, using pre-trained models and adopting an automatic architecture design. Methods addressing the lack of labelled datasets are grouped into four categories: methods using pre-trained models, methods using data augmentation, methods adopting weakly supervised learning and those adopting feedforward filter learning. Research works from each category and reported performance are presented in this paper. We conclude the paper by indicating some future research directions related to the analysis of histology images

    A New Hybrid Breast Cancer Diagnosis Model Using Deep Learning Model and ReliefF

    Get PDF
    Breast cancer is a dangerous type of cancer usually found in women and is a significant research topic in medical science. In patients who are diagnosed and not treated early, cancer spreads to other organs, making treatment difficult. In breast cancer diagnosis, the accuracy of the pathological diagnosis is of great importance to shorten the decision-making process, minimize unnoticed cancer cells and obtain a faster diagnosis. However, the similarity of images in histopathological breast cancer image analysis is a sensitive and difficult process that requires high competence for field experts. In recent years, researchers have been seeking solutions to this process using machine learning and deep learning methods, which have contributed to significant developments in medical diagnosis and image analysis. In this study, a hybrid DCNN + ReliefF is proposed for the classification of breast cancer histopathological images, utilizing the activation properties of pre-trained deep convolutional neural network (DCNN) models, and the dimension-reduction-based ReliefF feature selective algorithm. The model is based on a fine-tuned transfer-learning technique for fully connected layers. In addition, the models were compared to the k-nearest neighbor (kNN), naive Bayes (NB), and support vector machine (SVM) machine learning approaches. The performance of each feature extractor and classifier combination was analyzed using the sensitivity, precision, F1-Score, and ROC curves. The proposed hybrid model was trained separately at different magnifications using the BreakHis dataset. The results show that the model is an efficient classification model with up to 97.8% (AUC) accuracy. © 2022 Lavoisier. All rights reserved

    Breast cancer diagnosis: a survey of pre-processing, segmentation, feature extraction and classification

    Get PDF
    Machine learning methods have been an interesting method in the field of medical for many years, and they have achieved successful results in various fields of medical science. This paper examines the effects of using machine learning algorithms in the diagnosis and classification of breast cancer from mammography imaging data. Cancer diagnosis is the identification of images as cancer or non-cancer, and this involves image preprocessing, feature extraction, classification, and performance analysis. This article studied 93 different references mentioned in the previous years in the field of processing and tries to find an effective way to diagnose and classify breast cancer. Based on the results of this research, it can be concluded that most of today’s successful methods focus on the use of deep learning methods. Finding a new method requires an overview of existing methods in the field of deep learning methods in order to make a comparison and case study

    Towards Secure and Intelligent Diagnosis: Deep Learning and Blockchain Technology for Computer-Aided Diagnosis Systems

    Get PDF
    Cancer is the second leading cause of death across the world after cardiovascular disease. The survival rate of patients with cancerous tissue can significantly decrease due to late-stage diagnosis. Nowadays, advancements of whole slide imaging scanners have resulted in a dramatic increase of patient data in the domain of digital pathology. Large-scale histopathology images need to be analyzed promptly for early cancer detection which is critical for improving patient's survival rate and treatment planning. Advances of medical image processing and deep learning methods have facilitated the extraction and analysis of high-level features from histopathological data that could assist in life-critical diagnosis and reduce the considerable healthcare cost associated with cancer. In clinical trials, due to the complexity and large variance of collected image data, developing computer-aided diagnosis systems to support quantitative medical image analysis is an area of active research. The first goal of this research is to automate the classification and segmentation process of cancerous regions in histopathology images of different cancer tissues by developing models using deep learning-based architectures. In this research, a framework with different modules is proposed, including (1) data pre-processing, (2) data augmentation, (3) feature extraction, and (4) deep learning architectures. Four validation studies were designed to conduct this research. (1) differentiating benign and malignant lesions in breast cancer (2) differentiating between immature leukemic blasts and normal cells in leukemia cancer (3) differentiating benign and malignant regions in lung cancer, and (4) differentiating benign and malignant regions in colorectal cancer. Training machine learning models, disease diagnosis, and treatment often requires collecting patients' medical data. Privacy and trusted authenticity concerns make data owners reluctant to share their personal and medical data. Motivated by the advantages of Blockchain technology in healthcare data sharing frameworks, the focus of the second part of this research is to integrate Blockchain technology in computer-aided diagnosis systems to address the problems of managing access control, authentication, provenance, and confidentiality of sensitive medical data. To do so, a hierarchical identity and attribute-based access control mechanism using smart contract and Ethereum Blockchain is proposed to securely process healthcare data without revealing sensitive information to an unauthorized party leveraging the trustworthiness of transactions in a collaborative healthcare environment. The proposed access control mechanism provides a solution to the challenges associated with centralized access control systems and ensures data transparency and traceability for secure data sharing, and data ownership

    Learning models for semantic classification of insufficient plantar pressure images

    Get PDF
    Establishing a reliable and stable model to predict a target by using insufficient labeled samples is feasible and effective, particularly, for a sensor-generated data-set. This paper has been inspired with insufficient data-set learning algorithms, such as metric-based, prototype networks and meta-learning, and therefore we propose an insufficient data-set transfer model learning method. Firstly, two basic models for transfer learning are introduced. A classification system and calculation criteria are then subsequently introduced. Secondly, a dataset of plantar pressure for comfort shoe design is acquired and preprocessed through foot scan system; and by using a pre-trained convolution neural network employing AlexNet and convolution neural network (CNN)- based transfer modeling, the classification accuracy of the plantar pressure images is over 93.5%. Finally, the proposed method has been compared to the current classifiers VGG, ResNet, AlexNet and pre-trained CNN. Also, our work is compared with known-scaling and shifting (SS) and unknown-plain slot (PS) partition methods on the public test databases: SUN, CUB, AWA1, AWA2, and aPY with indices of precision (tr, ts, H) and time (training and evaluation). The proposed method for the plantar pressure classification task shows high performance in most indices when comparing with other methods. The transfer learning-based method can be applied to other insufficient data-sets of sensor imaging fields
    corecore