585 research outputs found

    A Majority Vote Based Classifier Ensemble for Web Service Classification

    Get PDF
    Service oriented architecture is a glue that allows web applications to work in collaboration. It has become a driving force for the service-oriented computing (SOC) paradigm. In heterogeneous environments the SOC paradigm uses web services as the basic building block to support low costs as well as easy and rapid composition of distributed applications. A web service exposes its interfaces using the Web Service Description Language (WSDL). A central repository called universal description, discovery and integration (UDDI) is used by service providers to publish and register their web services. UDDI registries are used by web service consumers to locate the web services they require and metadata associated with them. Manually analyzing WSDL documents is the best approach, but also most expensive. Work has been done on employing various approaches to automate the classification of web services. However, previous research has focused on using a single technique for classification. This research paper focuses on the classification of web services using a majority vote based classifier ensemble technique. The ensemble model overcomes the limitations of conventional techniques by employing the ensemble of three heterogeneous classifiers: Naïve Bayes, decision tree (J48), and Support Vector Machines. We applied tenfold cross-validation to test the efficiency of the model on a publicly available dataset consisting of 3738 real world web services categorized into 5 fields, which yielded an average accuracy of 92 %. The high accuracy is owed to two main factors, i.e., enhanced pre-processing with focused feature selection, and majority based ensemble classification

    Computational Intelligence in Healthcare

    Get PDF
    This book is a printed edition of the Special Issue Computational Intelligence in Healthcare that was published in Electronic

    Computational Intelligence in Healthcare

    Get PDF
    The number of patient health data has been estimated to have reached 2314 exabytes by 2020. Traditional data analysis techniques are unsuitable to extract useful information from such a vast quantity of data. Thus, intelligent data analysis methods combining human expertise and computational models for accurate and in-depth data analysis are necessary. The technological revolution and medical advances made by combining vast quantities of available data, cloud computing services, and AI-based solutions can provide expert insight and analysis on a mass scale and at a relatively low cost. Computational intelligence (CI) methods, such as fuzzy models, artificial neural networks, evolutionary algorithms, and probabilistic methods, have recently emerged as promising tools for the development and application of intelligent systems in healthcare practice. CI-based systems can learn from data and evolve according to changes in the environments by taking into account the uncertainty characterizing health data, including omics data, clinical data, sensor, and imaging data. The use of CI in healthcare can improve the processing of such data to develop intelligent solutions for prevention, diagnosis, treatment, and follow-up, as well as for the analysis of administrative processes. The present Special Issue on computational intelligence for healthcare is intended to show the potential and the practical impacts of CI techniques in challenging healthcare applications

    Customer churn prediction for web browsers

    Get PDF
    In the competitive web browser market, identifying potential churners is critical to decreasing the loss of existing customers. Churn prediction based on customer behaviors plays a vital role in customer retention strategies. However, traditional churn prediction algorithms such as Tree-based models cannot exploit the temporal characteristics of browser customers behaviors, while sequence models cannot explicitly extract the information between multiple behaviors. To meet this challenge, we propose a novel model named Multivariate Behavior Sequence Transformer (MBST) with two complementary attention mechanisms to explore the temporal and behavioral information separately. Furthermore, a Tree-based classifier is attached for churn prediction instead of using the multilayer perceptron. Extensive experiments on a real-world Tencent QQ browser dataset with over 600,000 samples demonstrate that the proposed MBST achieves the F-score of 82.72% and the Area Under Curve (AUC) of 93.75%, which significantly outperforms state-of-the-art methods in terms of churn prediction

    Quantum inspired approach for early classification of time series

    Get PDF
    Is it possible to apply some fundamental principles of quantum-computing to time series classi\ufb01cation algorithms? This is the initial spark that became the research question I decided to chase at the very beginning of my PhD studies. The idea came accidentally after reading a note on the ability of entanglement to express the correlation between two particles, even far away from each other. The test problem was also at hand because I was investigating on possible algorithms for real time bot detection, a challenging problem at present day, by means of statistical approaches for sequential classi\ufb01cation. The quantum inspired algorithm presented in this thesis stemmed as an evolution of the statistical method mentioned above: it is a novel approach to address binary and multinomial classi\ufb01cation of an incoming data stream, inspired by the principles of Quantum Computing, in order to ensure the shortest decision time with high accuracy. The proposed approach exploits the analogy between the intrinsic correlation of two or more particles and the dependence of each item in a data stream with the preceding ones. Starting from the a-posteriori probability of each item to belong to a particular class, we can assign a Qubit state representing a combination of the aforesaid probabilities for all available observations of the time series. By leveraging superposition and entanglement on subsequences of growing length, it is possible to devise a measure of membership to each class, thus enabling the system to take a reliable decision when a suf\ufb01cient level of con\ufb01dence is met. In order to provide an extensive and thorough analysis of the problem, a well-\ufb01tting approach for bot detection was replicated on our dataset and later compared with the statistical algorithm to determine the best option. The winner was subsequently examined against the new quantum-inspired proposal, showing the superior capability of the latter in both binary and multinomial classi\ufb01cation of data streams. The validation of quantum-inspired approach in a synthetically generated use case, completes the research framework and opens new perspectives in on-the-\ufb02y time series classi\ufb01cation, that we have just started to explore. Just to name a few ones, the algorithm is currently being tested with encouraging results in predictive maintenance and prognostics for automotive, in collaboration with University of Bradford (UK), and in action recognition from video streams

    On the Combination of Textual and Semantic Descriptions for Automated Semantic Web Service Classification

    Get PDF
    Abstract Semantic Web services have emerged as the solution to the need for automating several aspects related to service-oriented architectures, such as service discovery and composition, and they are realized by combining Semantic Web technologies and Web service standards. In the present paper, we tackle the problem of automated classification of Web services according to their application domain taking into account both the textual description and the semantic annotations of OWL-S advertisements. We present results that we obtained by applying machine learning algorithms on textual and semantic descriptions separately and we propose methods for increasing the overall classification accuracy through an extended feature vector and an ensemble of classifiers
    corecore