535 research outputs found

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Mining Twitter for crisis management: realtime floods detection in the Arabian Peninsula

    Get PDF
    A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of doctor of Philosophy.In recent years, large amounts of data have been made available on microblog platforms such as Twitter, however, it is difficult to filter and extract information and knowledge from such data because of the high volume, including noisy data. On Twitter, the general public are able to report real-world events such as floods in real time, and act as social sensors. Consequently, it is beneficial to have a method that can detect flood events automatically in real time to help governmental authorities, such as crisis management authorities, to detect the event and make decisions during the early stages of the event. This thesis proposes a real time flood detection system by mining Arabic Tweets using machine learning and data mining techniques. The proposed system comprises five main components: data collection, pre-processing, flooding event extract, location inferring, location named entity link, and flooding event visualisation. An effective method of flood detection from Arabic tweets is presented and evaluated by using supervised learning techniques. Furthermore, this work presents a location named entity inferring method based on the Learning to Search method, the results show that the proposed method outperformed the existing systems with significantly higher accuracy in tasks of inferring flood locations from tweets which are written in colloquial Arabic. For the location named entity link, a method has been designed by utilising Google API services as a knowledge base to extract accurate geocode coordinates that are associated with location named entities mentioned in tweets. The results show that the proposed location link method locate 56.8% of tweets with a distance range of 0 – 10 km from the actual location. Further analysis has shown that the accuracy in locating tweets in an actual city and region are 78.9% and 84.2% respectively

    Factors influencing the accuracy of remote sensing classifications: a comparative study

    Get PDF
    Within last 20 years, a number of methods have been employed for classifying remote sensing data, including parametric methods (e.g. the maximum likelihood classifier) and non-parametric classifiers (such as neural network classifiers).Each of these classification algorithms has some specific problems which limits its use. This research studies some alternative classification methods for land cover classification and compares their performance with the well established classification methods. The areas selected for this study are located near Littleport (Ely), in East Anglia, UK and in La Mancha region of Spain. Images in the optical bands of the Landsat ETM+ for year 2000 and InSAR data from May to September of 1996 for UK area, DAIS hyperspectral data and Landsat ETM+ for year 2000 for Spain area are used for this study. In addition, field data for the year 1996 were collected from farmers and for year 2000 were collected by field visits to both areas in the UK and Spain to generate the ground reference data set. The research was carried out in three main stages.The overall aim of this study is to assess the relative performance of four approaches to classification in remote sensing - the maximum likelihood, artificial neural net, decision tree and support vector machine methods and to examine factors which affect their performance in term of overall classification accuracy. Firstly, this research studies the behaviour of decision tree and support vector machine classifiers for land cover classification using ETM+ (UK) data. This stage discusses some factors affecting classification accuracy of a decision tree classifier, and also compares the performance of the decision tree with that of the maximum likelihood and neural network classifiers. The use of SVM requires the user to set the values of some parameters, such as type of kernel, kernel parameters, and multi-class methods as these parameters can significantly affect the accuracy of the resulting classification. This stage involves studying the effects of varying the various user defined parameters and noting their effect on classification accuracy. It is concluded that SVM perform far better than decision tree, maximum likelihood and neural network classifiers for this type of study. The second stage involves applying the decision tree, maximum likelihood and neural network classifiers to InSAR coherence and intensity data and evaluating the utility of this type of data for land cover classification studies. Finally, the last stage involves studying the response of SVMs, decision trees, maximum likelihood and neural classifier to different training data sizes, number of features, sampling plan, and the scale of the data used. The conclusion from the experiments presented in this stage is that the SVMs are unaffected by the Hughes phenomenon, and perform far better than the other classifiers in all cases. The performance of decision tree classifier based feature selection is found to be quite good in comparison with MNF transform. This study indicates that good classification performance depends on various parameters such as data type, scale of data, training sample size and type of classification method employed

    Factors influencing the accuracy of remote sensing classifications: a comparative study

    Get PDF
    Within last 20 years, a number of methods have been employed for classifying remote sensing data, including parametric methods (e.g. the maximum likelihood classifier) and non-parametric classifiers (such as neural network classifiers).Each of these classification algorithms has some specific problems which limits its use. This research studies some alternative classification methods for land cover classification and compares their performance with the well established classification methods. The areas selected for this study are located near Littleport (Ely), in East Anglia, UK and in La Mancha region of Spain. Images in the optical bands of the Landsat ETM+ for year 2000 and InSAR data from May to September of 1996 for UK area, DAIS hyperspectral data and Landsat ETM+ for year 2000 for Spain area are used for this study. In addition, field data for the year 1996 were collected from farmers and for year 2000 were collected by field visits to both areas in the UK and Spain to generate the ground reference data set. The research was carried out in three main stages.The overall aim of this study is to assess the relative performance of four approaches to classification in remote sensing - the maximum likelihood, artificial neural net, decision tree and support vector machine methods and to examine factors which affect their performance in term of overall classification accuracy. Firstly, this research studies the behaviour of decision tree and support vector machine classifiers for land cover classification using ETM+ (UK) data. This stage discusses some factors affecting classification accuracy of a decision tree classifier, and also compares the performance of the decision tree with that of the maximum likelihood and neural network classifiers. The use of SVM requires the user to set the values of some parameters, such as type of kernel, kernel parameters, and multi-class methods as these parameters can significantly affect the accuracy of the resulting classification. This stage involves studying the effects of varying the various user defined parameters and noting their effect on classification accuracy. It is concluded that SVM perform far better than decision tree, maximum likelihood and neural network classifiers for this type of study. The second stage involves applying the decision tree, maximum likelihood and neural network classifiers to InSAR coherence and intensity data and evaluating the utility of this type of data for land cover classification studies. Finally, the last stage involves studying the response of SVMs, decision trees, maximum likelihood and neural classifier to different training data sizes, number of features, sampling plan, and the scale of the data used. The conclusion from the experiments presented in this stage is that the SVMs are unaffected by the Hughes phenomenon, and perform far better than the other classifiers in all cases. The performance of decision tree classifier based feature selection is found to be quite good in comparison with MNF transform. This study indicates that good classification performance depends on various parameters such as data type, scale of data, training sample size and type of classification method employed

    Semantic multimedia modelling & interpretation for annotation

    Get PDF
    The emergence of multimedia enabled devices, particularly the incorporation of cameras in mobile phones, and the accelerated revolutions in the low cost storage devices, boosts the multimedia data production rate drastically. Witnessing such an iniquitousness of digital images and videos, the research community has been projecting the issue of its significant utilization and management. Stored in monumental multimedia corpora, digital data need to be retrieved and organized in an intelligent way, leaning on the rich semantics involved. The utilization of these image and video collections demands proficient image and video annotation and retrieval techniques. Recently, the multimedia research community is progressively veering its emphasis to the personalization of these media. The main impediment in the image and video analysis is the semantic gap, which is the discrepancy among a user’s high-level interpretation of an image and the video and the low level computational interpretation of it. Content-based image and video annotation systems are remarkably susceptible to the semantic gap due to their reliance on low-level visual features for delineating semantically rich image and video contents. However, the fact is that the visual similarity is not semantic similarity, so there is a demand to break through this dilemma through an alternative way. The semantic gap can be narrowed by counting high-level and user-generated information in the annotation. High-level descriptions of images and or videos are more proficient of capturing the semantic meaning of multimedia content, but it is not always applicable to collect this information. It is commonly agreed that the problem of high level semantic annotation of multimedia is still far from being answered. This dissertation puts forward approaches for intelligent multimedia semantic extraction for high level annotation. This dissertation intends to bridge the gap between the visual features and semantics. It proposes a framework for annotation enhancement and refinement for the object/concept annotated images and videos datasets. The entire theme is to first purify the datasets from noisy keyword and then expand the concepts lexically and commonsensical to fill the vocabulary and lexical gap to achieve high level semantics for the corpus. This dissertation also explored a novel approach for high level semantic (HLS) propagation through the images corpora. The HLS propagation takes the advantages of the semantic intensity (SI), which is the concept dominancy factor in the image and annotation based semantic similarity of the images. As we are aware of the fact that the image is the combination of various concepts and among the list of concepts some of them are more dominant then the other, while semantic similarity of the images are based on the SI and concept semantic similarity among the pair of images. Moreover, the HLS exploits the clustering techniques to group similar images, where a single effort of the human experts to assign high level semantic to a randomly selected image and propagate to other images through clustering. The investigation has been made on the LabelMe image and LabelMe video dataset. Experiments exhibit that the proposed approaches perform a noticeable improvement towards bridging the semantic gap and reveal that our proposed system outperforms the traditional systems

    BNAIC 2008:Proceedings of BNAIC 2008, the twentieth Belgian-Dutch Artificial Intelligence Conference

    Get PDF

    The blessings of explainable AI in operations & maintenance of wind turbines

    Get PDF
    Wind turbines play an integral role in generating clean energy, but regularly suffer from operational inconsistencies and failures leading to unexpected downtimes and significant Operations & Maintenance (O&M) costs. Condition-Based Monitoring (CBM) has been utilised in the past to monitor operational inconsistencies in turbines by applying signal processing techniques to vibration data. The last decade has witnessed growing interest in leveraging Supervisory Control & Acquisition (SCADA) data from turbine sensors towards CBM. Machine Learning (ML) techniques have been utilised to predict incipient faults in turbines and forecast vital operational parameters with high accuracy by leveraging SCADA data and alarm logs. More recently, Deep Learning (DL) methods have outperformed conventional ML techniques, particularly for anomaly prediction. Despite demonstrating immense promise in transitioning to Artificial Intelligence (AI), such models are generally black-boxes that cannot provide rationales behind their predictions, hampering the ability of turbine operators to rely on automated decision making. We aim to help combat this challenge by providing a novel perspective on Explainable AI (XAI) for trustworthy decision support.This thesis revolves around three key strands of XAI – DL, Natural Language Generation (NLG) and Knowledge Graphs (KGs), which are investigated by utilising data from an operational turbine. We leverage DL and NLG to predict incipient faults and alarm events in the turbine in natural language as well as generate human-intelligible O&M strategies to assist engineers in fixing/averting the faults. We also propose specialised DL models which can predict causal relationships in SCADA features as well as quantify the importance of vital parameters leading to failures. The thesis finally culminates with an interactive Question- Answering (QA) system for automated reasoning that leverages multimodal domain-specific information from a KG, facilitating engineers to retrieve O&M strategies with natural language questions. By helping make turbines more reliable, we envisage wider adoption of wind energy sources towards tackling climate change

    Evoking the Possibility of Presence:Textual and Ideological Effects of Linguistic Negation in Written Discourse

    Get PDF
    This thesis explores the textual and ideological effects of linguistic negation in written texts. It argues that when language users process negation, understanding its use in context is as much about the possibility of presence as it is about the actuality of absence. This gives rise to a variety of effects in texts from contributing to the construction of fictional characters to potentially influencing readers’/hearers’ view of the world they inhabit. This thesis brings together research on the theoretical aspects of how negation works to present a new approach to linguistic negation in written discourse. It also demonstrates how this approach can be applied in the analysis of the conceptual practice of negating. The approach presented is made up of three main elements; negation is presuppositional, is realised through a wide variety of linguistic forms beyond the morphosyntactic core forms (not, no, never, none, un-, in-, and so on) and includes semantic and pragmatically implied forms. These two elements combine to give rise to implied meaning in context. Having outlined this approach to negation, it is then applied in the analysis of literary and non-literary texts to explain the textual and ideological effects that arise from its use
    • 

    corecore