12,978 research outputs found

    Causality, Information and Biological Computation: An algorithmic software approach to life, disease and the immune system

    Full text link
    Biology has taken strong steps towards becoming a computer science aiming at reprogramming nature after the realisation that nature herself has reprogrammed organisms by harnessing the power of natural selection and the digital prescriptive nature of replicating DNA. Here we further unpack ideas related to computability, algorithmic information theory and software engineering, in the context of the extent to which biology can be (re)programmed, and with how we may go about doing so in a more systematic way with all the tools and concepts offered by theoretical computer science in a translation exercise from computing to molecular biology and back. These concepts provide a means to a hierarchical organization thereby blurring previously clear-cut lines between concepts like matter and life, or between tumour types that are otherwise taken as different and may not have however a different cause. This does not diminish the properties of life or make its components and functions less interesting. On the contrary, this approach makes for a more encompassing and integrated view of nature, one that subsumes observer and observed within the same system, and can generate new perspectives and tools with which to view complex diseases like cancer, approaching them afresh from a software-engineering viewpoint that casts evolution in the role of programmer, cells as computing machines, DNA and genes as instructions and computer programs, viruses as hacking devices, the immune system as a software debugging tool, and diseases as an information-theoretic battlefield where all these forces deploy. We show how information theory and algorithmic programming may explain fundamental mechanisms of life and death.Comment: 30 pages, 8 figures. Invited chapter contribution to Information and Causality: From Matter to Life. Sara I. Walker, Paul C.W. Davies and George Ellis (eds.), Cambridge University Pres

    Speech and crosstalk detection in multichannel audio

    Get PDF
    The analysis of scenarios in which a number of microphones record the activity of speakers, such as in a round-table meeting, presents a number of computational challenges. For example, if each participant wears a microphone, speech from both the microphone's wearer (local speech) and from other participants (crosstalk) is received. The recorded audio can be broadly classified in four ways: local speech, crosstalk plus local speech, crosstalk alone and silence. We describe two experiments related to the automatic classification of audio into these four classes. The first experiment attempted to optimize a set of acoustic features for use with a Gaussian mixture model (GMM) classifier. A large set of potential acoustic features were considered, some of which have been employed in previous studies. The best-performing features were found to be kurtosis, "fundamentalness," and cross-correlation metrics. The second experiment used these features to train an ergodic hidden Markov model classifier. Tests performed on a large corpus of recorded meetings show classification accuracies of up to 96%, and automatic speech recognition performance close to that obtained using ground truth segmentation

    PhysicsGP: A Genetic Programming Approach to Event Selection

    Full text link
    We present a novel multivariate classification technique based on Genetic Programming. The technique is distinct from Genetic Algorithms and offers several advantages compared to Neural Networks and Support Vector Machines. The technique optimizes a set of human-readable classifiers with respect to some user-defined performance measure. We calculate the Vapnik-Chervonenkis dimension of this class of learning machines and consider a practical example: the search for the Standard Model Higgs Boson at the LHC. The resulting classifier is very fast to evaluate, human-readable, and easily portable. The software may be downloaded at: http://cern.ch/~cranmer/PhysicsGP.htmlComment: 16 pages 9 figures, 1 table. Submitted to Comput. Phys. Commu

    Gene Expression and its Discontents: Developmental disorders as dysfunctions of epigenetic cognition

    Get PDF
    Systems biology presently suffers the same mereological and sufficiency fallacies that haunt neural network models of high order cognition. Shifting perspective from the massively parallel space of gene matrix interactions to the grammar/syntax of the time series of expressed phenotypes using a cognitive paradigm permits import of techniques from statistical physics via the homology between information source uncertainty and free energy density. This produces a broad spectrum of possible statistical models of development and its pathologies in which epigenetic regulation and the effects of embedding environment are analogous to a tunable enzyme catalyst. A cognitive paradigm naturally incorporates memory, leading directly to models of epigenetic inheritance, as affected by environmental exposures, in the largest sense. Understanding gene expression, development, and their dysfunctions will require data analysis tools considerably more sophisticated than the present crop of simplistic models abducted from neural network studies or stochastic chemical reaction theory
    • …
    corecore